Skip to main content

STAT3 (phospho Y705) peptide is a Synthetic blocking peptide. Suitable for BL.

Be the first to review this product! Submit a review

Publications

Key facts

Tags
Tag free
Applications
BL
Biologically active
No

Reactivity data

Application
BL
Reactivity
Reacts
Dilution info
-
Notes

-

Associated Products

Select an associated product type

1 product for Alternative Product

Target data

Function

Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors (PubMed:10688651, PubMed:12359225, PubMed:12873986, PubMed:15194700, PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18242580, PubMed:18782771, PubMed:22306293, PubMed:23084476, PubMed:28262505, PubMed:32929201, PubMed:38404237). Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18782771, PubMed:28262505, PubMed:32929201). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986). Upon activation of IL6ST/gp130 signaling by interleukin-6 (IL6), binds to the IL6-responsive elements identified in the promoters of various acute-phase protein genes (PubMed:12359225). Activated by IL31 through IL31RA (PubMed:15194700). Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): acetylation promotes its transcription activity and cell differentiation while deacetylation and oxidation of lysine residues by LOXL3 inhibits differentiation (PubMed:28065600, PubMed:28262505). Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (PubMed:17344214). Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation (PubMed:18242580). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity (PubMed:23084476). Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC3 and NFATC4, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity).

Alternative names

Recommended products

STAT3 (phospho Y705) peptide is a Synthetic blocking peptide. Suitable for BL.

Key facts

Applications
BL
Accession
P40763-1
Animal free
No
Species
Human
Concentration
Loading...

Sequence info

Amino acid sequence

Accession
P40763
Nature
Synthetic

Specifications

Form
Lyophilized

General info

Function

Signal transducer and transcription activator that mediates cellular responses to interleukins, KITLG/SCF, LEP and other growth factors (PubMed:10688651, PubMed:12359225, PubMed:12873986, PubMed:15194700, PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18242580, PubMed:18782771, PubMed:22306293, PubMed:23084476, PubMed:28262505, PubMed:32929201, PubMed:38404237). Once activated, recruits coactivators, such as NCOA1 or MED1, to the promoter region of the target gene (PubMed:15653507, PubMed:16285960, PubMed:17344214, PubMed:18782771, PubMed:28262505, PubMed:32929201). May mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4 (PubMed:12873986). Upon activation of IL6ST/gp130 signaling by interleukin-6 (IL6), binds to the IL6-responsive elements identified in the promoters of various acute-phase protein genes (PubMed:12359225). Activated by IL31 through IL31RA (PubMed:15194700). Acts as a regulator of inflammatory response by regulating differentiation of naive CD4(+) T-cells into T-helper Th17 or regulatory T-cells (Treg): acetylation promotes its transcription activity and cell differentiation while deacetylation and oxidation of lysine residues by LOXL3 inhibits differentiation (PubMed:28065600, PubMed:28262505). Involved in cell cycle regulation by inducing the expression of key genes for the progression from G1 to S phase, such as CCND1 (PubMed:17344214). Mediates the effects of LEP on melanocortin production, body energy homeostasis and lactation (By similarity). May play an apoptotic role by transctivating BIRC5 expression under LEP activation (PubMed:18242580). Cytoplasmic STAT3 represses macroautophagy by inhibiting EIF2AK2/PKR activity (PubMed:23084476). Plays a crucial role in basal beta cell functions, such as regulation of insulin secretion (By similarity). Following JAK/STAT signaling activation and as part of a complex with NFATC3 and NFATC4, binds to the alpha-beta E4 promoter region of CRYAB and activates transcription in cardiomyocytes (By similarity).

Sequence similarities

Belongs to the transcription factor STAT family.

Post-translational modifications

Tyrosine phosphorylated upon stimulation with EGF. Tyrosine phosphorylated in response to constitutively activated FGFR1, FGFR2, FGFR3 and FGFR4 (By similarity). Activated through tyrosine phosphorylation by BMX. Tyrosine phosphorylated in response to IL6, IL11, LIF, CNTF, KITLG/SCF, CSF1, EGF, PDGF, IFN-alpha, LEP and OSM. Activated KIT promotes phosphorylation on tyrosine residues and subsequent translocation to the nucleus. Phosphorylated on serine upon DNA damage, probably by ATM or ATR. Serine phosphorylation is important for the formation of stable DNA-binding STAT3 homodimers and maximal transcriptional activity. ARL2BP may participate in keeping the phosphorylated state of STAT3 within the nucleus. Upon LPS challenge, phosphorylated within the nucleus by IRAK1. Upon erythropoietin treatment, phosphorylated on Ser-727 by RPS6KA5. Dephosphorylation on tyrosine residues by PTPN2 negatively regulates IL6/interleukin-6 signaling (By similarity). Phosphorylation at Tyr-705 by PTK6, isoform M2 of PKM (PKM2) or FER leads to an increase of its transcriptional activity (PubMed:12763138, PubMed:16568091, PubMed:21135090, PubMed:22306293, PubMed:32929201). Phosphorylation at Tyr-705 is increased in the presence of calcineurin (By similarity). Phosphorylation at Tyr-640 by TYK2 negatively regulates transcriptional activity (PubMed:29162862).

Subcellular localisation
Nucleus

Storage

Shipped at conditions
Blue Ice
Appropriate short-term storage conditions
Ambient
Appropriate long-term storage conditions
-20°C

Notes

- First try to dissolve a small amount of peptide in either water or buffer. The more charged residues on a peptide, the more soluble it is in aqueous solutions.
- If the peptide doesn't dissolve try an organic solvent e.g. DMSO, then dilute using water or buffer.
- Consider that any solvent used must be compatible with your assay. If a peptide does not dissolve and you need to recover it, lyophilise to remove the solvent.
- Gentle warming and sonication can effectively aid peptide solubilisation. If the solution is cloudy or has gelled the peptide may be in suspension rather than solubilised.
- Peptides containing cysteine are easily oxidised, so should be prepared in solution just prior to use.

Product promise

We are dedicated to supporting your work with high quality reagents and we are here for you every step of the way should you need us.

In the unlikely event of one of our products not working as expected, you are covered by our product promise.

Full details and terms and conditions can be found here:
Terms & Conditions.

0 product images

    Downloads

    Product protocols

    For this product, it's our understanding that no specific protocols are required. You can:

    Please note: All products are 'FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC OR THERAPEUTIC PROCEDURES'.

    For licensing inquiries, please contact partnerships@abcam.com