Skip to main content

FGFR1_HUMAN

Domain

The second and third Ig-like domains directly interact with fibroblast growth factors (FGF) and heparan sulfate proteoglycans. Isoforms lacking the first Ig-like domain have higher affinity for fibroblast growth factors (FGF) and heparan sulfate proteoglycans than isoforms with all three Ig-like domains.

Function

Tyrosine-protein kinase that acts as cell-surface receptor for fibroblast growth factors and plays an essential role in the regulation of embryonic development, cell proliferation, differentiation and migration. Required for normal mesoderm patterning and correct axial organization during embryonic development, normal skeletogenesis and normal development of the gonadotropin-releasing hormone (GnRH) neuronal system. Phosphorylates PLCG1, FRS2, GAB1 and SHB. Ligand binding leads to the activation of several signaling cascades. Activation of PLCG1 leads to the production of the cellular signaling molecules diacylglycerol and inositol 1,4,5-trisphosphate. Phosphorylation of FRS2 triggers recruitment of GRB2, GAB1, PIK3R1 and SOS1, and mediates activation of RAS, MAPK1/ERK2, MAPK3/ERK1 and the MAP kinase signaling pathway, as well as of the AKT1 signaling pathway. Promotes phosphorylation of SHC1, STAT1 and PTPN11/SHP2. In the nucleus, enhances RPS6KA1 and CREB1 activity and contributes to the regulation of transcription. FGFR1 signaling is down-regulated by IL17RD/SEF, and by FGFR1 ubiquitination, internalization and degradation.

Involvement in disease

Pfeiffer syndrome

PS

A syndrome characterized by the association of craniosynostosis, broad and deviated thumbs and big toes, and partial syndactyly of the fingers and toes. Three subtypes are known: mild autosomal dominant form (type 1); cloverleaf skull, elbow ankylosis, early death, sporadic (type 2); craniosynostosis, early demise, sporadic (type 3).

None

The disease is caused by variants affecting the gene represented in this entry.

Hypogonadotropic hypogonadism 2 with or without anosmia

HH2

A disorder characterized by absent or incomplete sexual maturation by the age of 18 years, in conjunction with low levels of circulating gonadotropins and testosterone and no other abnormalities of the hypothalamic-pituitary axis. In some cases, it is associated with non-reproductive phenotypes, such as anosmia, cleft palate, and sensorineural hearing loss. Anosmia or hyposmia is related to the absence or hypoplasia of the olfactory bulbs and tracts. Hypogonadism is due to deficiency in gonadotropin-releasing hormone and probably results from a failure of embryonic migration of gonadotropin-releasing hormone-synthesizing neurons. In the presence of anosmia, idiopathic hypogonadotropic hypogonadism is referred to as Kallmann syndrome, whereas in the presence of a normal sense of smell, it has been termed normosmic idiopathic hypogonadotropic hypogonadism (nIHH).

None

The disease is caused by variants affecting distinct genetic loci, including the gene represented in this entry. Some patients carrying mutations in FGFR1 also have a mutation other HH-associated genes including DUSP6, FGF8, FGF17, FLRT3, GNRH1, GNRHR, HS6ST1, IL17RD, ANOS1, KISS1R, NSMF, PROKR2, SPRY4 and TACR3 (PubMed:23643382).

Osteoglophonic dysplasia

OGD

Characterized by craniosynostosis, prominent supraorbital ridge, and depressed nasal bridge, as well as by rhizomelic dwarfism and nonossifying bone lesions. Inheritance is autosomal dominant.

None

The disease is caused by variants affecting the gene represented in this entry.

Hartsfield syndrome

HRTFDS

A syndrome characterized by the triad of holoprosencephaly, ectrodactyly, and cleft/lip palate. Profound mental retardation is also present. Multiple other congenital anomalies usually occur.

None

The disease is caused by variants affecting the gene represented in this entry.

Trigonocephaly 1

TRIGNO1

A keel-shaped deformation of the forehead, caused by premature fusion of the metopic sutures. It results in a triangular shape of the head.

None

The disease is caused by variants affecting the gene represented in this entry.

Chromosomal aberrations involving FGFR1 are a cause of chromosome 8p11 myeloproliferative syndrome. Translocation t(8;13)(p11;q12) with ZMYM2. Translocation t(6;8)(q27;p11) with CEP43. Insertion ins(12;8)(p11;p11p22) with FGFR1OP2. Translocation t(8;9)(p12;q33) with CNTRL. Translocation t(2;8)(q12;p11) with RANBP2. Chromosome 8p11 myeloproliferative syndrome is characterized by myeloid hyperplasia, eosinophilia and T-cell or B-cell lymphoblastic lymphoma. In general it progresses to acute myeloid leukemia. The fusion proteins FGFR1OP2-FGFR1, CEP43-FGFR1 or FGFR1-CEP43 may exhibit constitutive kinase activity and be responsible for the transforming activity. The fusion protein CNTRL-FGFR1 is found in the cytoplasm, exhibits constitutive kinase activity and may be responsible for the transforming activity.

Encephalocraniocutaneous lipomatosis

ECCL

A sporadically occurring, neurocutaneous disorder characterized by ocular anomalies, skin lesions, and central nervous system anomalies. Clinical features include a well-demarcated hairless fatty nevus on the scalp, benign ocular tumors, intracranial and intraspinal lipomas, and congenital abnormalities of the meninges. Seizures, spasticity, and intellectual disability can be present.

None

The disease is caused by variants affecting the gene represented in this entry.

Jackson-Weiss syndrome

JWS

An autosomal dominant craniosynostosis syndrome characterized by craniofacial abnormalities and abnormality of the feet: broad great toes with medial deviation and tarsal-metatarsal coalescence.

None

The disease is caused by variants affecting the gene represented in this entry.

Post-translational modifications

Autophosphorylated. Binding of FGF family members together with heparan sulfate proteoglycan or heparin promotes receptor dimerization and autophosphorylation on tyrosine residues. Autophosphorylation occurs in trans between the two FGFR molecules present in the dimer and proceeds in a highly ordered manner. Initial autophosphorylation at Tyr-653 increases the kinase activity by a factor of 50 to 100. After this, Tyr-583 becomes phosphorylated, followed by phosphorylation of Tyr-463, Tyr-766, Tyr-583 and Tyr-585. In a third stage, Tyr-654 is autophosphorylated, resulting in a further tenfold increase of kinase activity. Phosphotyrosine residues provide docking sites for interacting proteins and so are crucial for FGFR1 function and its regulation.

Ubiquitinated. FGFR1 is rapidly ubiquitinated by NEDD4 after autophosphorylation, leading to internalization and lysosomal degradation. CBL is recruited to activated FGFR1 via FRS2 and GRB2, and mediates ubiquitination and subsequent degradation of FGFR1.

N-glycosylated in the endoplasmic reticulum. The N-glycan chains undergo further maturation to an Endo H-resistant form in the Golgi apparatus.

Sequence similarities

Belongs to the protein kinase superfamily. Tyr protein kinase family. Fibroblast growth factor receptor subfamily.

Tissue specificity

Detected in astrocytoma, neuroblastoma and adrenal cortex cell lines. Some isoforms are detected in foreskin fibroblast cell lines, however isoform 17, isoform 18 and isoform 19 are not detected in these cells.

Cellular localization

  • Cell membrane
  • Single-pass type I membrane protein
  • Nucleus
  • Cytoplasm
  • Cytosol
  • Cytoplasmic vesicle
  • After ligand binding, both receptor and ligand are rapidly internalized. Can translocate to the nucleus after internalization, or by translocation from the endoplasmic reticulum or Golgi apparatus to the cytosol, and from there to the nucleus.

Alternative names

  • Fibroblast growth factor receptor 1
  • FGFR-1
  • Basic fibroblast growth factor receptor 1
  • Fms-like tyrosine kinase 2
  • N-sam
  • Proto-oncogene c-Fgr
  • BFGFR
  • bFGF-R-1
  • FLT-2
  • FGFR1
  • BFGFR
  • CEK
  • FGFBR
  • FLG
  • FLT2
  • HBGFR

Target type

Proteins

Primary research area

Oncology

Other research areas

  • Neuroscience

Molecular weight

91868Da