The atypical PHD-type zinc finger recognizes and binds histone H3 trimethylated on 'Lys-4' (H3K4me3). The presence Tyr-445 instead of a carboxylate in classical PHD-type zinc fingers results in an enhanced binding to H3K4me3 in presence of dimethylated on 'Arg-2' (H3R2me2) rather than inhibited. The atypical PHD-type zinc finger also binds various phosphoinositides, such as phosphatidylinositol 3,4-bisphosphate binding (PtdIns(3,4)P2), phosphatidylinositol 3,5-bisphosphate binding (PtdIns(3,5)P2), phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and phosphatidylinositol 3,4,5-trisphosphate binding (PtdIns(3,4,5)P3) (By similarity).
Core component of the RAG complex, a multiprotein complex that mediates the DNA cleavage phase during V(D)J recombination. V(D)J recombination assembles a diverse repertoire of immunoglobulin and T-cell receptor genes in developing B and T-lymphocytes through rearrangement of different V (variable), in some cases D (diversity), and J (joining) gene segments. DNA cleavage by the RAG complex occurs in 2 steps: a first nick is introduced in the top strand immediately upstream of the heptamer, generating a 3'-hydroxyl group that can attack the phosphodiester bond on the opposite strand in a direct transesterification reaction, thereby creating 4 DNA ends: 2 hairpin coding ends and 2 blunt, 5'-phosphorylated ends. The chromatin structure plays an essential role in the V(D)J recombination reactions and the presence of histone H3 trimethylated at 'Lys-4' (H3K4me3) stimulates both the nicking and haipinning steps. The RAG complex also plays a role in pre-B cell allelic exclusion, a process leading to expression of a single immunoglobulin heavy chain allele to enforce clonality and monospecific recognition by the B-cell antigen receptor (BCR) expressed on individual B-lymphocytes. The introduction of DNA breaks by the RAG complex on one immunoglobulin allele induces ATM-dependent repositioning of the other allele to pericentromeric heterochromatin, preventing accessibility to the RAG complex and recombination of the second allele. In the RAG complex, RAG2 is not the catalytic component but is required for all known catalytic activities mediated by RAG1. It probably acts as a sensor of chromatin state that recruits the RAG complex to H3K4me3 (By similarity).
Combined cellular and humoral immune defects with granulomas
CHIDG
Immunodeficiency disease with granulomas in the skin, mucous membranes, and internal organs. Other characteristics include hypogammaglobulinemia, a diminished number of T and B-cells, and sparse thymic tissue on ultrasonography.
None
The disease is caused by variants affecting the gene represented in this entry.
Severe combined immunodeficiency autosomal recessive T-cell-negative/B-cell-negative/NK-cell-positive
T(-)B(-)NK(+) SCID
A form of severe combined immunodeficiency (SCID), a genetically and clinically heterogeneous group of rare congenital disorders characterized by impairment of both humoral and cell-mediated immunity, leukopenia, and low or absent antibody levels. Patients present in infancy recurrent, persistent infections by opportunistic organisms. The common characteristic of all types of SCID is absence of T-cell-mediated cellular immunity due to a defect in T-cell development.
None
The disease is caused by variants affecting the gene represented in this entry.
Omenn syndrome
OS
Severe immunodeficiency characterized by the presence of activated, anergic, oligoclonal T-cells, hypereosinophilia, and high IgE levels.
None
The disease is caused by variants affecting the gene represented in this entry.
Belongs to the RAG2 family.
Cells of the B- and T-lymphocyte lineages.
Proteins
Epigenetics
59241Da
We found 3 products in 1 category
ab189835
ab95955
ab72962