Sample Prep & Detection Kits
Conjugation kitsPurification kitsSample preparation kitsChromogen kitsIHC kitsChIP kitsAccessory Reagents & Controls
Accessory reagents & controlsBiochemicals
BiochemicalsProteins and Peptides
Proteins and peptidesOur latest ELISA kit: Human Tau (phospho T217) - Intracellular
Highly sensitive kit offering the most promising biomarkers for Alzheimer’s disease diagnostics. Learn about all product ranges with our product overviews.
Featured events
Make new connections at our global events.
Our programs
New Lab Program
Get a head start with our exclusive new lab discount. Enjoy 20% off and free shipping for three months.
New Biotech Program
Just starting out? Get 15% off and free shipping to your lab for six months.
Product promise
Peace of mind that all products perform as stated.
Product reviews
Leave reviews, get rewarded and help your community.
Trial program
Try untested species and applications to earn money off your next order.
Contains sequence and structural motifs very similar to those of a bacterial superantigen and can directly bind and activate T-cell receptors. Activation of a broad T-cell repertoire may be involved in the hyperinflammatory syndrome in acute COVID disease.
The KxHxx motif seems to function as an ER retrieval and binds COPI in vitro.
Fusion peptide 1 (FP1) and fusion peptide 2 (FP2) function cooperatively and have a membrane-ordering effect on lipid headgroups and shallow hydrophobic regions of target bilayers. They are considered as two domains of an extended, bipartite FP. The membrane-ordering activity is calcium-dependent and also dependent on correct folding, which is maintained by an internal disulfide bond in FP2.
Spike protein S1
Attaches the virion to the cell membrane by interacting with host receptor, initiating the infection. The major receptor is host ACE2 (PubMed:32142651, PubMed:33607086, PubMed:32155444). When S2/S2' has been cleaved, binding to the receptor triggers direct fusion at the cell membrane (PubMed:34561887). When S2/S2' has not been cleaved, binding to the receptor results in internalization of the virus by endocytosis leading to fusion of the virion membrane with the host endosomal membrane (PubMed:32221306, PubMed:32075877). Alternatively, may use NRP1/NRP2 (PubMed:33082294, PubMed:33082293) and integrin as entry receptors (PubMed:35150743). The use of NRP1/NRP2 receptors may explain the tropism of the virus in human olfactory epithelial cells, which express these molecules at high levels but ACE2 at low levels (PubMed:33082293). The stalk domain of S contains three hinges, giving the head unexpected orientational freedom (PubMed:32817270).
Spike protein S2
Precursor of the fusion protein processed in the biosynthesis of the S protein and the formation of virus particle. Mediates fusion of the virion and cellular membranes by functioning as a class I viral fusion protein. Contains two viral fusion peptides that are unmasked after cleavage. The S2/S2' cleavage occurs during virus entry at the cell membrane by host TMPRSS2 (PubMed:32142651) or during endocytosis by host CSTL (PubMed:32703818, PubMed:34159616). In either case, this triggers an extensive and irreversible conformational change leading to fusion of the viral envelope with the cellular cytoplasmic membrane, releasing viral genomic RNA into the host cell cytoplasm (PubMed:34561887). Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During fusion of the viral and target cell membranes, the coiled coil regions (heptad repeats) adopt a trimer-of-hairpins structure and position the fusion peptide in close proximity to the C-terminal region of the ectodomain. Formation of this structure appears to promote apposition and subsequent fusion of viral and target cell membranes.
Spike protein S2'
Subunit of the fusion protein that is processed upon entry into the host cell. Mediates fusion of the virion and cellular membranes by functioning as a class I viral fusion protein. Contains a viral fusion peptide that is unmasked after S2 cleavage. This cleavage can occur at the cell membrane by host TMPRSS2 or during endocytosis by host CSTL (PubMed:32703818, PubMed:34159616). In either case, this triggers an extensive and irreversible conformational change that leads to fusion of the viral envelope with the cellular cytoplasmic membrane, releasing viral genomic RNA into the host cell cytoplasm (PubMed:34561887). Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During fusion of the viral and target cell membranes, the coiled coil regions (heptad repeats) adopt a trimer-of-hairpins structure and position the fusion peptide in close proximity to the C-terminal region of the ectodomain. Formation of this structure appears to promote apposition and subsequent fusion of viral and target cell membranes.
The cytoplasmic Cys-rich domain is palmitoylated. Palmitoylated spike proteins drive the formation of localized ordered cholesterol and sphingo-lipid-rich lipid nanodomains in the early Golgi, where viral budding occurs.
Specific enzymatic cleavages in vivo yield mature proteins. The precursor is processed into S1 and S2 by host furin or unknown proteases to yield the mature S1 and S2 proteins (PubMed:32362314, PubMed:32703818, PubMed:34159616, PubMed:34561887, PubMed:32155444). Processing between S2 and S2' occurs either by host CTSL in endosomes (PubMed:32221306, PubMed:33465165, PubMed:34159616), or by host TMPRSS2 at the cell surface (PubMed:32142651). Both cleavages are necessary for the protein to be fusion competent (PubMed:32703818, PubMed:34159616, PubMed:34561887). Cell surface activation allows the virus to enter the cell despite inhibition of the endosomal pathway by hydroxychloroquine (PubMed:33465165). The polybasic furin cleavage site is absent in SARS-CoV S (PubMed:32155444, PubMed:32362314, PubMed:33465165). It increases the dependence on TMPRSS2 expression by SARS-CoV-2 (PubMed:33465165). D614G substitution would enhance furin cleavage at the S1/S2 junction (PubMed:33417835).
Highly decorated by heterogeneous N-linked glycans protruding from the trimer surface (PubMed:32075877, PubMed:32155444, PubMed:32929138). Highly glycosylated by host both on S1 and S2 subunits, occluding many regions across the surface of the protein (PubMed:32366695, PubMed:32363391, PubMed:32929138). Approximately 40% of the protein surface is shielded from antibody recognition by glycans, with the notable exception of the ACE2 receptor binding domain (PubMed:32929138).
O-glycosylated by host GALNT1 at the end of S1. This could reduce the efficiency of S1/S2 cleavage.
Belongs to the betacoronaviruses spike protein family.
Proteins
141178Da