Recombinant Anti-ERG antibody [EPR3864] (ab92513)

Rabbit recombinant monoclonal ERG antibody [EPR3864]. Validated in WB, IHC, Flow Cyt, ChIP, ICC/IF and tested in Mouse, Rat, Human. Cited in 73 publication(s). Independently reviewed in 12 review(s).

Publishing research using ab92513? Please let us know so that we can cite the reference in this datasheet.

ab92513 has been referenced in 74 publications.

  • Kim YH  et al. A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis. Nat Commun 10:838 (2019). PubMed: 30783090
  • Crist AM  et al. Vascular deficiency of Smad4 causes arteriovenous malformations: a mouse model of Hereditary Hemorrhagic Telangiectasia. Angiogenesis 21:363-380 (2018). IHC - Wholemount . PubMed: 29460088
  • Lugano R  et al. CD93 promotes ß1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest 128:3280-3297 (2018). PubMed: 29763414
  • Delliaux C  et al. TMPRSS2:ERG gene fusion expression regulates bone markers and enhances the osteoblastic phenotype of prostate cancer bone metastases. Cancer Lett 438:32-43 (2018). PubMed: 30201302
  • Nagai N  et al. Downregulation of ERG and FLI1 expression in endothelial cells triggers endothelial-to-mesenchymal transition. PLoS Genet 14:e1007826 (2018). PubMed: 30500808
  • Bergiers I  et al. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. Elife 7:N/A (2018). PubMed: 29555020
  • Shao L  et al. Fibroblast growth factor receptor signaling plays a key role in transformation induced by the TMPRSS2/ERG fusion gene and decreased PTEN. Oncotarget 9:14456-14471 (2018). WB, IHC . PubMed: 29581856
  • Shirali AS  et al. A multi-step transcriptional cascade underlies vascular regeneration in vivo. Sci Rep 8:5430 (2018). PubMed: 29615716
  • Rhee S  et al. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease. Nat Commun 9:368 (2018). PubMed: 29371594
  • Neto F  et al. YAP and TAZ regulate adherens junction dynamics and endothelial cell distribution during vascular development. Elife 7:N/A (2018). PubMed: 29400648
  • Sainio M  et al. Expression of neuroendocrine differentiation markers in lethal metastatic castration-resistant prostate cancer. Pathol Res Pract N/A:N/A (2018). PubMed: 29728311
  • Dave JM  et al. Pericyte ALK5/TIMP3 Axis Contributes to Endothelial Morphogenesis in the Developing Brain. Dev Cell 44:665-678.e6 (2018). PubMed: 29456135
  • Vandekeere S  et al. Serine Synthesis via PHGDH Is Essential for Heme Production in Endothelial Cells. Cell Metab N/A:N/A (2018). PubMed: 30017355
  • Rescigno P  et al. Docetaxel Treatment in PTEN- and ERG-aberrant Metastatic Prostate Cancers. Eur Urol Oncol 1:71-77 (2018). PubMed: 29911685
  • Hikita T  et al. PAR-3 controls endothelial planar polarity and vascular inflammation under laminar flow. EMBO Rep 19:N/A (2018). PubMed: 30018153
  • Su T  et al. Single-cell analysis of early progenitor cells that build coronary arteries. Nature 559:356-362 (2018). PubMed: 29973725
  • Kivinummi K  et al. The expression of AURKA is androgen regulated in castration-resistant prostate cancer. Sci Rep 7:17978 (2017). IHC . PubMed: 29269934
  • Shah RB  et al. Atypical intraductal proliferation and intraductal carcinoma of the prostate on core needle biopsy: a comparative clinicopathological and molecular study with a proposal to expand the morphological spectrum of intraductal carcinoma. Histopathology 71:693-702 (2017). PubMed: 28570007
  • Jin Y  et al. Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat Cell Biol 19:639-652 (2017). IHC-P . PubMed: 28530660
  • Sugden WW  et al. Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol 19:653-665 (2017). Mouse . PubMed: 28530658
  • Malinverno M  et al. Peg3/PW1 Is a Marker of a Subset of Vessel Associated Endothelial Progenitors. Stem Cells 35:1328-1340 (2017). PubMed: 28090691
  • Chow BW & Gu C Gradual Suppression of Transcytosis Governs Functional Blood-Retinal Barrier Formation. Neuron 93:1325-1333.e3 (2017). PubMed: 28334606
  • Tai-Nagara I  et al. Placental labyrinth formation in mice requires endothelial FLRT2/UNC5B signaling. Development 144:2392-2401 (2017). PubMed: 28576770
  • Poduri A  et al. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 144:3241-3252 (2017). PubMed: 28760815
  • Yang Y  et al. Loss of FOXO1 Cooperates with TMPRSS2-ERG Overexpression to Promote Prostate Tumorigenesis and Cell Invasion. Cancer Res 77:6524-6537 (2017). PubMed: 28986382
  • Xu Y  et al. GATA3-induced vWF upregulation in the lung adenocarcinoma vasculature. Oncotarget 8:110517-110529 (2017). ICC/IF ; Human . PubMed: 29299165
  • Fang JS  et al. Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification. Nat Commun 8:2149 (2017). PubMed: 29247167
  • Egaña I  et al. Female mice lacking Pald1 exhibit endothelial cell apoptosis and emphysema. Sci Rep 7:15453 (2017). PubMed: 29133847
  • Mack JJ  et al. NOTCH1 is a mechanosensor in adult arteries. Nat Commun 8:1620 (2017). PubMed: 29158473
  • Groman-Lupa S  et al. The Transcription Factor Prdm16 Marks a Single Retinal Ganglion Cell Subtype in the Mouse Retina. Invest Ophthalmol Vis Sci 58:5421-5433 (2017). PubMed: 29053761
  • Chang AH  et al. DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12-CXCR4 signaling axis. Genes Dev N/A:N/A (2017). PubMed: 28779009
  • Wang Z  et al. Significance of the TMPRSS2:ERG gene fusion in prostate cancer. Mol Med Rep 16:5450-5458 (2017). PubMed: 28849022
  • Wang Y  et al. Smooth muscle cell recruitment to lymphatic vessels requires PDGFB and impacts vessel size but not identity. Development 144:3590-3601 (2017). PubMed: 28851707
  • Khalil H  et al. Fibroblast-specific TGF-ß-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest 127:3770-3783 (2017). PubMed: 28891814
  • Gordon EJ  et al. The endothelial adaptor molecule TSAd is required for VEGF-induced angiogenic sprouting through junctional c-Src activation. Sci Signal 9:ra72 (2016). PubMed: 27436360
  • Silva MP  et al. Cancer Prognosis Defined by the Combined Analysis of 8q, PTEN and ERG. Transl Oncol 9:575-582 (2016). PubMed: 27916292
  • Mani RS  et al. Inflammation-Induced Oxidative Stress Mediates Gene Fusion Formation in Prostate Cancer. Cell Rep 17:2620-2631 (2016). PubMed: 27926866
  • Wilhelm K  et al. FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature 529:216-20 (2016). IHC . PubMed: 26735015
  • Beltran H  et al. Divergent clonal evolution of castration-resistant neuroendocrine prostate cancer. Nat Med 22:298-305 (2016). IHC . PubMed: 26855148
  • Zhang C  et al. Catalpol downregulates vascular endothelial-cadherin expression and induces vascular hyperpermeability. Mol Med Rep 13:373-8 (2016). WB . PubMed: 26549479
  • Almami A  et al. ING3 is associated with increased cell invasion and lethal outcome in ERG-negative prostate cancer patients. Tumour Biol 37:9731-8 (2016). PubMed: 26803516
  • Shah RB  et al. ERG overexpression and multifocality predict prostate cancer in subsequent biopsy for patients with high-grade prostatic intraepithelial neoplasia. Urol Oncol 34:120.e1-7 (2016). IHC-P ; Human . PubMed: 26585946
  • Papangeli I  et al. MicroRNA 139-5p coordinates APLNR-CXCR4 crosstalk during vascular maturation. Nat Commun 7:11268 (2016). PubMed: 27068353
  • Kim TD  et al. ETS transcription factor ERG cooperates with histone demethylase KDM4A. Oncol Rep 35:3679-88 (2016). PubMed: 27109047
  • Tsourlakis MC  et al. Heterogeneity of ERG expression in prostate cancer: a large section mapping study of entire prostatectomy specimens from 125 patients. BMC Cancer 16:641 (2016). PubMed: 27530104
  • Kumar P  et al. Loss of miR-449a in ERG-associated prostate cancer promotes the invasive phenotype by inducing SIRT1. Oncotarget 7:22791-806 (2016). PubMed: 26988912
  • Majumder S  et al. G-Protein-Coupled Receptor-2-Interacting Protein-1 Controls Stalk Cell Fate by Inhibiting Delta-like 4-Notch1 Signaling. Cell Rep 17:2532-2541 (2016). PubMed: 27926858
  • Linn DE  et al. Genetic interaction between Tmprss2-ERG gene fusion and Nkx3.1-loss does not enhance prostate tumorigenesis in mouse models. PLoS One 10:e0120628 (2015). PubMed: 25780911
  • Pippin JW  et al. Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease. Am J Physiol Renal Physiol 309:F341-58 (2015). ICC/IF ; Mouse . PubMed: 26062877
  • Lunardi A  et al. Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis. Cancer Discov 5:550-63 (2015). IHC ; Human . PubMed: 25653093
  • Stefanitsch C  et al. tPA Deficiency in Mice Leads to Rearrangement in the Cerebrovascular Tree and Cerebroventricular Malformations. Front Cell Neurosci 9:456 (2015). PubMed: 26648843
  • Hargrove AE  et al. Tumor Repression of VCaP Xenografts by a Pyrrole-Imidazole Polyamide. PLoS One 10:e0143161 (2015). PubMed: 26571387
  • Strand SH  et al. High levels of 5-hydroxymethylcytosine (5hmC) is an adverse predictor of biochemical recurrence after prostatectomy in ERG-negative prostate cancer. Clin Epigenetics 7:111 (2015). PubMed: 26478752
  • Giampietro C  et al. The alternative splicing factor Nova2 regulates vascular development and lumen formation. Nat Commun 6:8479 (2015). PubMed: 26446569
  • Schneider TM & Osunkoya AO ERG expression in intraductal carcinoma of the prostate: comparison with adjacent invasive prostatic adenocarcinoma. Mod Pathol 27:1174-8 (2014). IHC-P ; Human . PubMed: 24406865
  • Asangani IA  et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature 510:278-82 (2014). PubMed: 24759320
  • Flucke U  et al. Epithelioid Hemangioendothelioma: clinicopathologic, immunhistochemical, and molecular genetic analysis of 39 cases. Diagn Pathol 9:131 (2014). IHC-P ; Human . PubMed: 24986479
  • Koochekpour S  et al. Establishment and characterization of a highly tumorigenic African American prostate cancer cell line, E006AA-hT. Int J Biol Sci 10:834-45 (2014). WB ; Human . PubMed: 25076860
  • Palanisamy N  et al. Molecular profiling of ETS gene rearrangements in patients with prostate cancer registered in REDEEM clinical trial. Urol Oncol N/A:N/A (2014). Human . PubMed: 25175425
  • Flavin R  et al. SPINK1 protein expression and prostate cancer progression. Clin Cancer Res 20:4904-11 (2014). Human . PubMed: 24687926
  • Mounir Z  et al. TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation. Oncogene N/A:N/A (2014). PubMed: 25263440
  • Rosenbaum J  et al. Significantly higher expression levels of androgen receptor are associated with erythroblastosis virus E26 oncogene related gene positive prostate cancer. Am J Clin Exp Urol 2:249-57 (2014). PubMed: 25374927
  • Shao L  et al. Celastrol suppresses tumor cell growth through targeting an AR-ERG-NF-?B pathway in TMPRSS2/ERG fusion gene expressing prostate cancer. PLoS One 8:e58391 (2013). WB, IHC ; Human . PubMed: 23554889
  • Tian TV  et al. Identification of novel TMPRSS2:ERG mechanisms in prostate cancer metastasis: involvement of MMP9 and PLXNA2. Oncogene N/A:N/A (2013). PubMed: 23708657
  • Chen Y  et al. ETS factors reprogram the androgen receptor cistrome and prime prostate tumorigenesis in response to PTEN loss. Nat Med 19:1023-9 (2013). WB, IHC-P, ChIP ; Mouse . PubMed: 23817021
  • Johnson H  et al. ERG expression in mucinous prostatic adenocarcinoma and prostatic adenocarcinoma with mucinous features: comparison with conventional prostatic adenocarcinoma. Hum Pathol 44:2241-6 (2013). IHC ; Human . PubMed: 23849895
  • Hafko R  et al. Commercially available angiotensin II At2 receptor antibodies are nonspecific. PLoS One 8:e69234 (2013). WB, IHC-Fr ; Mouse, Rat . PubMed: 23840911
  • Casey OM  et al. TMPRSS2- driven ERG expression in vivo increases self-renewal and maintains expression in a castration resistant subpopulation. PLoS One 7:e41668 (2012). WB, IHC-Fr ; Mouse . PubMed: 22860005
  • Kirby BJ  et al. Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7:e35976 (2012). ICC/IF ; Human . PubMed: 22558290
  • Barbieri CE  et al. Exome sequencing identifies recurrent SPOP, FOXA1 and MED12 mutations in prostate cancer. Nat Genet 44:685-9 (2012). Human . PubMed: 22610119
  • Yaskiv O  et al. ERG protein expression in human tumors detected with a rabbit monoclonal antibody. Am J Clin Pathol 138:803-10 (2012). Human . PubMed: 23161713
  • Chaux A  et al. Immunohistochemistry for ERG expression as a surrogate for TMPRSS2-ERG fusion detection in prostatic adenocarcinomas. Am J Surg Pathol 35:1014-20 (2011). PubMed: 21677539
  • Rubin MA  et al. Common gene rearrangements in prostate cancer. J Clin Oncol 29:3659-68 (2011). IHC . PubMed: 21859993
  • Mohamed AA  et al. Ets family protein, erg expression in developing and adult mouse tissues by a highly specific monoclonal antibody. J Cancer 1:197-208 (2010). WB ; Human . PubMed: 21060730

For licensing inquiries, please contact

Sign up