Product datasheet

Fatty Acid Oxidation Assay ab217602

Overview

Product name
Fatty Acid Oxidation Assay

Detection method
Fluorescent

Sample type
Adherent cells, Suspension cells

Assay type
Cell-based (quantitative)

Product overview
Fatty Acid Oxidation Assay (ab217602) allows the detection of Fatty Acid Oxidation (FAO) in live cells when used in combination with our Extracellular Oxygen Consumption Assay (ab197243).

The assay uses the 18C unsaturated fatty acid Oleate as substrate, and includes two FAO modulators, etomoxir and FCCP. Etomoxir, an inhibitor of the carnitine transporter CPT1, prevents Oleate import and thereby limits the supply of reducing equivalents to the ETC, reducing oxygen consumption in turn. The remaining ETC (electron transport chain) activity is driven by non-long chain FAO. FCCP treatment induces maximal ETC activity by dissipating the mitochondrial membrane potential, while the increased demand for reducing equivalents causes a concomitant increase in the FAO activity. If exogenous long-chain fatty acid is unavailable or import is inhibited, FAO activity will be limited.

Notes
Learn more about the full range of assays to measure glycolysis, oxygen consumption, fatty acid oxidation and metabolic flux in live cells.

Or review the full metabolism assay guide for other assays for metabolites, metabolic enzymes, mitochondrial function, and oxidative stress.

Platform
Microplate reader

Properties

Storage instructions
Please refer to protocols.

<table>
<thead>
<tr>
<th>Components</th>
<th>55 tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etomoxir</td>
<td>1 x 0.074mg</td>
</tr>
<tr>
<td>FAO Conjugate</td>
<td>1 x 1ml</td>
</tr>
<tr>
<td>FAO Control</td>
<td>1 x 500µl</td>
</tr>
<tr>
<td>FAO Tablet</td>
<td>1 tablet</td>
</tr>
</tbody>
</table>

1 Images
FAO-driven oxygen respiration in HepG2 cells treated with the CPT-1 inhibitor Etomoxir (white) and uncoupler FCCP (gray).

Untreated cells (basal FAO) curve shows a steady increase of the Extracellular O$_2$ Consumption Reagent signal reflecting ETC-driven oxygen consumption. Signal Control shows probe signal in the absence of cell respiration. Etomoxir treatment prevents oleate import, resulting in reduced availability of reducing equivalents and a resultant decrease in ETC activity. The remaining ETC activity (difference between Etomoxir treatment and Signal Control) is driven by metabolic activity other than long chain FAO. FCCP treatment induces maximal ETC activity by dissipating the mitochondrial membrane potential. Increased demand for reducing equivalents causes a concomitant increase in FAO as indicated by the rapid increase in Extracellular O$_2$ Consumption Reagent signal.

This strong increase in ETC activity is not observed where exogenous LCFA is unavailable or where import is inhibited.

The figure summarizes the balance between these parameters under “Basal” and “Maximum” (FCCP treated) conditions. The increased energy demand imposed by FCCP treatment is met by increased FAO.

Please note: All products are “FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES”

Our Abpromise to you: Quality guaranteed and expert technical support
- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors