Recombinant
RabMAb

Recombinant Anti-Histone H3.3C antibody [EPR10085(B)] - BSA and Azide free (ab177028)

Overview

  • Product name

    Anti-Histone H3.3C antibody [EPR10085(B)] - BSA and Azide free
    See all Histone H3.3C primary antibodies
  • Description

    Rabbit monoclonal [EPR10085(B)] to Histone H3.3C - BSA and Azide free
  • Host species

    Rabbit
  • Tested applications

    Suitable for: WB, IHC-Pmore details
    Unsuitable for: Flow Cyt or ICC
  • Species reactivity

    Reacts with: Mouse, Rat, Human
  • Immunogen

    Synthetic peptide within Human Histone H3.3C aa 50 to the C-terminus (internal sequence). The exact sequence is proprietary.
    Database link: Q6NXT2

  • General notes

    Ab177028 is the carrier-free version of ab150417. This format is designed for use in antibody labeling, including fluorochromes, metal isotopes, oligonucleotides, enzymes.

     

    Our carrier-free formats are supplied in a buffer free of BSA, sodium azide and glycerol for higher conjugation efficiency.

    Use our conjugation kits  for antibody conjugates that are ready-to-use in as little as 20 minutes with <1 minute hands-on-time and 100% antibody recovery: available for fluorescent dyes, HRP, biotin and gold.

    ab177028 is compatible with the Maxpar® Antibody Labeling Kit from Fluidigm.

    Maxpar® is a trademark of Fluidigm Canada Inc.

    Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMab® patents.

    This product is a recombinant rabbit monoclonal antibody.

Properties

Applications

Our Abpromise guarantee covers the use of ab177028 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application Abreviews Notes
WB Use at an assay dependent concentration. Predicted molecular weight: 15 kDa.
IHC-P Use at an assay dependent concentration. Perform heat mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol.
  • Application notes
    Is unsuitable for Flow Cyt or ICC.
  • Target

    • Function

      Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Hominid-specific H3.5/H3F3C preferentially colocalizes with euchromatin, and it is associated with actively transcribed genes.
    • Tissue specificity

      Specifically expressed in the seminiferous tubules of testis.
    • Sequence similarities

      Belongs to the histone H3 family.
    • Post-translational
      modifications

      Acetylation is generally linked to gene activation. Acetylation on Lys-10 (H3K9ac) impairs methylation at Arg-9 (H3R8me2s). Acetylation on Lys-19 (H3K18ac) and Lys-24 (H3K24ac) favors methylation at Arg-18 (H3R17me).
      Citrullination at Arg-9 (H3R8ci) and/or Arg-18 (H3R17ci) by PADI4 impairs methylation and represses transcription.
      Asymmetric dimethylation at Arg-18 (H3R17me2a) by CARM1 is linked to gene activation. Symmetric dimethylation at Arg-9 (H3R8me2s) by PRMT5 is linked to gene repression. Asymmetric dimethylation at Arg-3 (H3R2me2a) by PRMT6 is linked to gene repression and is mutually exclusive with H3 Lys-5 methylation (H3K4me2 and H3K4me3). H3R2me2a is present at the 3' of genes regardless of their transcription state and is enriched on inactive promoters, while it is absent on active promoters.
      Methylation at Lys-5 (H3K4me) is linked to gene activation. Methylation at Lys-5 (H3K4me) facilitates subsequent acetylation of H3 and H4. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are linked to gene repression. Methylation at Lys-10 (H3K9me) is a specific target for HP1 proteins (CBX1, CBX3 and CBX5) and prevents subsequent phosphorylation at Ser-11 (H3S10ph) and acetylation of H3 and H4. Methylation at Lys-5 (H3K4me) requires preliminary monoubiquitination of H2B at 'Lys-120'. Methylation at Lys-10 (H3K9me) and Lys-28 (H3K27me) are enriched in inactive X chromosome chromatin. Monomethylation at Lys-56 (H3K56me1) by EHMT2/G9A in G1 phase promotes interaction with PCNA and is required for DNA replication.
      Phosphorylated at Thr-4 (H3T3ph) by GSG2/haspin during prophase and dephosphorylated during anaphase. Phosphorylation at Ser-11 (H3S10ph) by AURKB is crucial for chromosome condensation and cell-cycle progression during mitosis and meiosis. In addition phosphorylation at Ser-11 (H3S10ph) by RPS6KA4 and RPS6KA5 is important during interphase because it enables the transcription of genes following external stimulation, like mitogens, stress, growth factors or UV irradiation and result in the activation of genes, such as c-fos and c-jun. Phosphorylation at Ser-11 (H3S10ph), which is linked to gene activation, prevents methylation at Lys-10 (H3K9me) but facilitates acetylation of H3 and H4. Phosphorylation at Ser-11 (H3S10ph) by AURKB mediates the dissociation of HP1 proteins (CBX1, CBX3 and CBX5) from heterochromatin. Phosphorylation at Ser-11 (H3S10ph) is also an essential regulatory mechanism for neoplastic cell transformation. Phosphorylated at Ser-29 (H3S28ph) by MLTK isoform 1, RPS6KA5 or AURKB during mitosis or upon ultraviolet B irradiation. Phosphorylation at Thr-7 (H3T6ph) by PRKCB is a specific tag for epigenetic transcriptional activation that prevents demethylation of Lys-5 (H3K4me) by LSD1/KDM1A. At centromeres, specifically phosphorylated at Thr-12 (H3T11ph) from prophase to early anaphase, by DAPK3 and PKN1. Phosphorylation at Thr-12 (H3T11ph) by PKN1 is a specific tag for epigenetic transcriptional activation that promotes demethylation of Lys-10 (H3K9me) by KDM4C/JMJD2C. Phosphorylation at Tyr-41 (H3Y41ph) by JAK2 promotes exclusion of CBX5 (HP1 alpha) from chromatin.
      Lysine deamination at Lys-5 (H3K4all) to form allysine is mediated by LOXL2. Allysine formation by LOXL2 only takes place on H3K4me3 and results in gene repression.
    • Cellular localization

      Nucleus. Chromosome.
    • Information by UniProt
    • Database links

    • Alternative names

      • H3 histone, family 3C antibody
      • H3.5 antibody
      • H3C_HUMAN antibody
      • h3f3c antibody
      • Histone H3.3C antibody
      • Histone H3.5 antibody
      • Histone variant H3.5 antibody
      see all

    References

    ab177028 has not yet been referenced specifically in any publications.

    Customer reviews and Q&As

    There are currently no Customer reviews or Questions for ab177028.
    Please use the links above to contact us or submit feedback about this product.

    Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"
    For licensing inquiries, please contact partnerships@abcam.com

    Sign up