Product datasheet

Anti-HMGB1 antibody [EPR3507] ab79823

![KO VALIDATED | Recombinant | RabMab](#)

Overview

<table>
<thead>
<tr>
<th>Product name</th>
<th>Anti-HMGB1 antibody [EPR3507]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Rabbit monoclonal [EPR3507] to HMGB1</td>
</tr>
<tr>
<td>Host species</td>
<td>Rabbit</td>
</tr>
</tbody>
</table>
| **Tested applications** | **Suitable for:** ICC/IF, WB, Flow Cyt, IHC-P
Unsuitable for: IP |
| **Species reactivity** | **Reacts with:** Mouse, Rat, Human |
| **Immunogen** | Synthetic peptide within Human HMGB1 aa 150 to the C-terminus (C terminal). The exact sequence is proprietary.
Database link: P09429 |
| **General notes** | Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents
We are constantly working hard to ensure we provide our customers with best in class antibodies. As a result of this work we are pleased to now offer this antibody in purified format. We are in the process of updating our datasheets. The purified format is designated 'PUR' on our product labels. If you have any questions regarding this update, please contact our Scientific Support team.
This product is a recombinant rabbit monoclonal antibody. |

Properties

<table>
<thead>
<tr>
<th>Form</th>
<th>Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage instructions</td>
<td>Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C. Stable for 12 months at -20°C.</td>
</tr>
</tbody>
</table>
| **Storage buffer** | pH: 7.20
Preservative: 0.01% Sodium azide
Constituents: PBS, 40% Glycerol, 0.05% BSA |
| **Purity** | Protein A purified |
Clonality: Monoclonal
Clone number: EPR3507
Isotype: IgG

Applications

Our Abpromise guarantee covers the use of ab79823 in the following tested applications.
The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

<table>
<thead>
<tr>
<th>Application</th>
<th>Abreviews</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC/IF</td>
<td></td>
<td>1/250.</td>
</tr>
<tr>
<td>WB</td>
<td></td>
<td>1/10000 - 1/50000. Detects a band of approximately 25 kDa (predicted molecular weight: 25 kDa).</td>
</tr>
<tr>
<td>Flow Cyt</td>
<td>ab172730 - Rabbit monoclonal IgG, is suitable for use as an isotype control with this antibody.</td>
<td></td>
</tr>
<tr>
<td>IHC-P</td>
<td>1/350 - 1/400. Perform heat mediated antigen retrieval with Tris/EDTA buffer pH 9.0 before commencing with IHC staining protocol. See IHC antigen retrieval protocols.</td>
<td></td>
</tr>
</tbody>
</table>

Application notes

Is unsuitable for IP.

Target

Function

Multifunctional redox sensitive protein with various roles in different cellular compartments. In the nucleus is one of the major chromatin-associated non-histone proteins and acts as a DNA chaperone involved in replication, transcription, chromatin remodeling, V(D)J recombination, DNA repair and genome stability. Proposed to be an universal biosensor for nucleic acids. Promotes host inflammatory response to sterile and infectious signals and is involved in the coordination and integration of innate and adaptive immune responses. In the cytoplasm functions as sensor and/or chaperone for immunogenic nucleic acids implicating the activation of TLR9-mediated immune responses, and mediates autophagy. Acts as danger associated molecular pattern (DAMP) molecule that amplifies immune responses during tissue injury. Released to the extracellular environment can bind DNA, nucleosomes, IL-1 beta, CXCL12, AGER isoform 2/sRAGE, lipopolysaccharide (LPS) and lipoteichoic acid (LTA), and activates cells through engagement of multiple surface receptors. In the extracellular compartment fully reduced HMGB1 (released by necrosis) acts as a chemokine, disulfide HMGB1 (actively secreted) as a cytokine, and sulfanyl HMGB1 (released from apoptotic cells) promotes immunological tolerance (PubMed:23519706, PubMed:23446148, PubMed:23994764, PubMed:25048472). Has proangiogenic activity (By similarity). May be involved in platelet activation (By similarity). Binds to phosphatidyserine and phosphatidylethanolamide (By similarity). Bound to RAGE mediates signaling for neuronal outgrowth (By similarity). May play a role in accumulation of expanded polyglutamine (polyQ) proteins such as huntingtin (HTT) or TBP (PubMed:23303669, PubMed:25549101). Nuclear functions are attributed to fully reduced HGMB1. Associates with chromatin and binds DNA with a preference to non-canonical DNA structures such as single-stranded DNA, DNA-containing cruciforms or bent structures, supercoiled DNA and ZDNA. Can bent DNA and...
enhance DNA flexibility by looping thus providing a mechanism to promote activities on various gene promoters by enhancing transcription factor binding and/or bringing distant regulatory sequences into close proximity (PubMed:20123072). May have an enhancing role in nucleotide excision repair (NER) (By similarity). However, effects in NER using in vitro systems have been reported conflictingly (PubMed:19446504, PubMed:19360789). May be involved in mismatch repair (MMR) and base excision repair (BER) pathways (PubMed:15014079, PubMed:16143102, PubMed:17803946). May be involved in double strand break repair such as non-homologous end joining (NHEJ) (By similarity). Involved in V(D)J recombination by acting as a cofactor of the RAG complex: acts by stimulating cleavage and RAG protein binding at the 23 bp spacer of conserved recombination signal sequences (RSS) (By similarity). In vitro can displace histone H1 from highly bent DNA (By similarity). Can restructure the canonical nucleosome leading to relaxation of structural constraints for transcription factor-binding (By similarity). Enhances binding of sterol regulatory element-binding proteins (SREBPs) such as SREBF1 to their cognate DNA sequences and increases their transcriptional activities (By similarity). Facilitates binding of TP53 to DNA (PubMed:23063560). Proposed to be involved in mitochondrial quality control and autophagy in a transcription-dependent fashion implicating HSPB1; however, this function has been questioned (By similarity). Can modulate the activity of the telomerase complex and may be involved in telomere maintenance.

In the cytoplasm proposed to dissociate the BECN1:BCL2 complex via competitive interaction with BECN1 leading to autophagy activation (PubMed:20819940). Involved in oxidative stress-mediated autophagy (PubMed:21395369). Can protect BECN1 and ATG5 from calpain-mediated cleavage and thus proposed to control their proautophagic and proapoptotic functions and to regulate the extent and severity of inflammation-associated cellular injury (By similarity). In myeloid cells has a protective role against endotoxemia and bacterial infection by promoting autophagy (By similarity). Involved in endosomal translocation and activation of TLR9 in response to CpG-DNA in macrophages.

In the extracellular compartment (following either active secretion or passive release) involved in regulation of the inflammatory response. Fully reduced HGMB1 (which subsequently gets oxidized after release) in association with CXCL12 mediates the recruitment of inflammatory cells during the initial phase of tissue injury; the CXCL12:HMGB1 complex triggers CXCR4 homodimerization (PubMed:22370717). Induces the migration of monocyte-derived immature dendritic cells and seems to regulate adhesive and migratory functions of neutrophils implicating AGER/RAGE and ITGAM (By similarity). Can bind to various types of DNA and RNA including microbial unmethylated CpG-DNA to enhance the innate immune response to nucleic acids. Proposed to act in promiscuous DNA/RNA sensing which cooperates with subsequent discriminative sensing by specific pattern recognition receptors (By similarity). Promotes extracellular DNA-induced AIM2 inflammasome activation implicating AGER/RAGE (PubMed:24971542). Disulfide HMGB1 binds to transmembrane receptors, such as AGER/RAGE, TLR2, TLR4 and probably TREM1, thus activating their signal transduction pathways. Mediates the release of cytokines/chemokines such as TNF, IL-1, IL-6, IL-8, CCL2, CCL3, CCL4 and CXCL10 (PubMed:12765338, PubMed:18354232, PubMed:19264983, PubMed:20547845, PubMed:24474694). Promotes secretion of interferon-gamma by macrophage-stimulated natural killer (NK) cells in concert with other cytokines like IL-2 or IL-12 (PubMed:15607795). TLR4 is proposed to be the primary receptor promoting macrophage activation and signaling through TLR4 seems to implicate LY96/MD-2 (PubMed:20547845). In bacterial LPS- or LTA-mediated inflammatory responses binds to the endotoxins and transfers them to CD14 for signaling to the respective TLR4:LY96 and TLR2 complexes (PubMed:18354232, PubMed:21660935, PubMed:25660311). Contributes to tumor proliferation by association with ACER/RAGE (By similarity). Can bind to IL1-beta and signals through the IL1R1:IL1RAP receptor complex (PubMed:18250463). Binding to class A CpG activates cytokine production in plasmacytoid dendritic cells implicating TLR9, MYD88 and AGER/RAGE and can activate autoreactive B cells. Via HMGB1-containing chromatin immune complexes may also promote B cell responses to endogenous TLR9 ligands through a B-cell
receptor (BCR)-dependent and ACER/RAGE-independent mechanism (By similarity). Inhibits phagocytosis of apoptotic cells by macrophages; the function is dependent on poly-ADP-ribosylation and involves binding to phosphatidylserine on the cell surface of apoptotic cells (By similarity). In adaptive immunity may be involved in enhancing immunity through activation of effector T cells and suppression of regulatory T (TReg) cells (PubMed:15944249, PubMed:22473704). In contrast, without implicating effector or regulatory T-cells, required for tumor infiltration and activation of T-cells expressing the lymphotoxin LTA:LTB heterotrimer thus promoting tumor malignant progression (By similarity). Also reported to limit proliferation of T-cells (By similarity). Released HMGB1:nucleosome complexes formed during apoptosis can signal through TLR2 to induce cytokine production (PubMed:19064698). Involved in induction of immunological tolerance by apoptotic cells; its pro-inflammatory activities when released by apoptotic cells are neutralized by reactive oxygen species (ROS)-dependent oxidation specifically on Cys-106 (PubMed:18631454). During macrophage activation by activated lymphocyte-derived self apoptotic DNA (ALD-DNA) promotes recruitment of ALD-DNA to endosomes.

Tissue specificity

Sequence similarities
Belongs to the HMGB family.
Contains 2 HMG box DNA-binding domains.

Domain
HMG box 2 mediates proinflammatory cytokine-stimulating activity and binding to TLR4 (PubMed:12765338, PubMed:20547845). However, not involved in mediating immunogenic activity in the context of apoptosis-induced immune tolerance (PubMed:24474694). The acidic C-terminal domain forms a flexible structure which can reversibly interact intramolecularly with the HMG boxes and modulate binding to DNA and other proteins (PubMed:23063560).

Post-translational modifications
Phosphorylated at serine residues. Phosphorylation in both NLS regions is required for cytoplasmic translocation followed by secretion (PubMed:17114460).
Acetylated on multiple sites upon stimulation with LPS (PubMed:22801494). Acetylation on lysine residues in the nuclear localization signals (NLS 1 and NLS 2) leads to cytoplasmic localization and subsequent secretion (By similarity). Acetylation on Lys-3 results in preferential binding to DNA ends and impairs DNA bending activity.
Reduction/oxidation of cysteine residues Cys-23, Cys-45 and Cys-106 and a possible intramolecular disulfide bond involving Cys-23 and Cys-45 give rise to different redox forms with specific functional activities in various cellular compartments: 1- fully reduced HMGB1 (HMGB1C23hC45hC106h), 2- disulfide HMGB1 (HMGB1C23-C45C106h) and 3- sulfonyl HMGB1 (HMGB1C23soC45soC106so).
Poly-ADP-ribosylated by PARP1 when secreted following stimulation with LPS. In vitro cleavage by CASP1 is liberating a HMG box 1-containing peptide which may mediate immunogenic activity; the peptide antagonizes apoptosis-induced immune tolerance (PubMed:24474694). Can be proteolytically cleaved by a thrombin:thrombomodulin complex; reduces binding to heparin and proinflammatory activities.

Cellular localization
Nucleus. Chromosome. Cytoplasm. Secreted. Cell membrane. Endosome. Endoplasmic reticulum-Golgi intermediate compartment. In basal state predominantly nuclear. Shuttles between the cytoplasm and the nucleus (PubMed:12231511, PubMed:17114460). Translocates from the nucleus to the cytoplasm upon autophagy stimulation (PubMed:20819940). Release from macrophages in the extracellular milieu requires the activation of NLRC4 or NLRP3 inflammasomes (By similarity). Passively released to the extracellular milieu from necrotic cells by diffusion, involving the fully reduced HGMB1 which subsequently gets oxidized (PubMed:19811284). Also released from apoptic cells (PubMed:16855214, PubMed:18631454). Active secretion from a variety of immune and non-immune cells such as macrophages, monocytes, neutrophils, dendritic cells and natural killer cells in response to various stimuli such as LPS and cytokines involves a nonconventional secretory process via secretory lysosomes.
Secreted by plasma cells in response to LPS (By similarity). Found on the surface of activated platelets (PubMed: 11154118).

Lane 1: Wild-type HAP1 whole cell lysate (20 µg)
Lane 2: HMGB1 knockout HAP1 whole cell lysate (20 µg)
Lane 3: Jurkat whole cell lysate (20 µg)
Lane 4: HeLa whole cell lysate (20 µg)

Lanes 1 - 4: Merged signal (red and green). Green - ab79823 observed at 30 kDa. Red - loading control, ab9484, observed at 37 kDa.

ab79823 was shown to specifically react with HMGB1 in wild-type HAP1 cells as signal was lost in HMGB1 knockout cells. Wild-type and HMGB1 knockout samples were subjected to SDS-PAGE. ab79823 and ab9484 (Mouse anti-GAPDH loading control) were incubated overnight at 4°C at 1/10000 dilution and 1/20000 dilution respectively. Blots were developed with Goat anti-Rabbit IgG H&L (IRDye® 800CW) preabsorbed ab216773 and Goat anti-Mouse IgG H&L (IRDye® 680RD) preabsorbed ab216776 secondary antibodies at 1/20000 dilution for 1 hour at room temperature before imaging.

ab79823 staining HMGB1 in wild-type HAP1 cells (top panel) and HMGB1 knockout HAP1 cells (bottom panel). The cells were fixed with 4% formaldehyde for 10 minutes, permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1 hour. The cells were then incubated with ab79823 at 1/250 dilution and ab195889 at 1/250 dilution (shown in pseudo colour red) overnight at +4°C, followed by a further incubation at room temperature for 1 hour with Goat Anti-Rabbit IgG H&L (Alexa Fluor® 488) preadsorbed (ab150081) secondary antibody at 2 µg/ml (shown in green). Nuclear DNA was labelled in blue with DAPI. Image was taken with a confocal microscope (Leica-Microsystems, TCS SP8).
Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) analysis of human tonsil tissue labeling HMGB1 with unpurified ab79823 at 1/350. Heat mediated antigen retrieval was performed using Tris/EDTA buffer pH 9. A prediluted HRP-polymer conjugated anti-rabbit IgG was used as the secondary antibody. Counterstained with Hematoxylin.

Immunofluorescence analysis of murine RAW 264.7 macrophages, either untreated (upper panel) or treated with LPS (bottom panel). HMGB1 was stained using unpurified ab79823. Cells were fixed in paraformaldehyde, blocked in BSA for 1h, followed by permeabilization in 10% Triton X-100 for 30 min. Samples were incubated with primary antibody overnight at 4°C. An Alexa Fluor® 488-conjugated anti-rabbit IgG was used as the secondary antibody.
ICC/IF image of unpurified ab79823 stained DU 145 (Human prostate carcinoma cell line) cells. The cells were 4% formaldehyde fixed (10 min) and then incubated in 1%BSA / 10% normal goat serum / 0.3M glycine in 0.1% PBS-Tween for 1h to permeabilize the cells and block non-specific protein-protein interactions. The cells were then incubated with the antibody ab79823 at 1/1000 dilution overnight at +4°C. The secondary antibody (green) was DyLight® 488 goat anti-rabbit (ab96899) IgG (H+L) used at a 1/1000 dilution for 1h. Alexa Fluor® 594 WGA was used to label plasma membranes (red) at a 1/200 dilution for 1h. DAPI was used to stain the cell nuclei (blue) at a concentration of 1.43µM.

Immunocytochemistry/Immunofluorescence analysis of HeLa cells labelling HMGB1 (red) with unpurified ab79823 at 1/350. Cells were fixed with 4% paraformaldehyde. An Alexa Fluor® 555-conjugated goat anti-rabbit IgG (1/200) was used as the secondary antibody. Counterstained with DAPI (blue).

All lanes: Anti-HMGB1 antibody [EPR3507] (ab79823) at 1/10000 dilution (purified)

Lane 1: SK-BR-3 (Human mammary gland adenocarcinoma cell line) cell lysate
Lane 2: HeLa (Human epithelial cell line from cervix adenocarcinoma) cell lysate

Lysates/proteins at 10 µg per lane.

Secondary

All lanes: Peroxidase-conjugated goat anti-rabbit IgG (H+L) at 1/1000 dilution

Predicted band size: 25 kDa
Observed band size: 25 kDa

Blocking/Dilution buffer and concentration: 5% NFDM/TBST.
Western blot - Anti-HMGB1 antibody [EPR3507] (ab79823)

Anti-HMGB1 antibody [EPR3507] (ab79823) at 1/10000 dilution (purified) + Rat brain tissue lysate at 10 µg

Secondary
Peroxidase-conjugated goat anti-rabbit IgG (H+L) at 1/1000 dilution

Predicted band size: 25 kDa
Observed band size: 25 kDa

Blocking/Dilution buffer and concentration: 5% NFDM/TBST.

All lanes: Anti-HMGB1 antibody [EPR3507] (ab79823) at 1/50000 dilution (unpurified)

Lane 1: SK-BR-3 cell lysate
Lane 2: HeLa cell lysate
Lane 3: HepG2 cell lysate

Lysates/proteins at 10 µg per lane.

Secondary
All lanes: Goat anti-rabbit HRP conjugate at 1/2000 dilution

Predicted band size: 25 kDa
Observed band size: 25 kDa

Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) analysis of human kidney tissue labeling HMGB1 with unpurified ab79823 at 1/250 dilution.
Overlay histogram showing HeLa (Human epithelial cell line from cervix adenocarcinoma) cells stained with unpurified ab79823 (red line). The cells were fixed with methanol (5 min) and then permeabilized with 0.1% PBS-Tween for 20 min. The cells were then incubated in 1x PBS / 10% normal goat serum / 0.3M glycine to block non-specific protein-protein interactions followed by the antibody (ab79823, 1/20 dilution) for 30 min at 22°C. The secondary antibody used was DyLight® 488 goat anti-rabbit IgG (H+L) (ab96899) at 1/500 dilution for 30 min at 22°C. Isotype control antibody (black line) was rabbit monoclonal IgG (0.5µg/1x10^6 cells) used under the same conditions. Acquisition of >5,000 events was performed. This antibody gave a decreased signal in HeLa cells fixed with 4% paraformaldehyde/permeabilized with 0.1% PBS-Tween 20 used under the same conditions.

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors