Human Lrp2 / Megalin peptide ab101417

Description

Product name: Human Lrp2 / Megalin peptide
Purity: 70 - 90% by HPLC.
Animal free: No
Nature: Synthetic
Species: Human

Specifications

Our Abpromise guarantee covers the use of ab101417 in the following tested applications. The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications: Blocking - Blocking peptide for Anti-Lrp2 / Megalin antibody (ab76969)
Form: Liquid

Additional notes:
- First try to dissolve a small amount of peptide in either water or buffer. The more charged residues on a peptide, the more soluble it is in aqueous solutions.
- If the peptide doesn't dissolve try an organic solvent e.g. DMSO, then dilute using water or buffer.
- Consider that any solvent used must be compatible with your assay. If a peptide does not dissolve and you need to recover it, lyophilise to remove the solvent.
- Gentle warming and sonication can effectively aid peptide solubilisation. If the solution is cloudy or has gelled the peptide may be in suspension rather than solubilised.
- Peptides containing cysteine are easily oxidised, so should be prepared in solution just prior to use.

Preparation and Storage

Stability and Storage: Shipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw cycles.
Information available upon request.

General Info
Function
Acts together with cubilin to mediate HDL endocytosis (By similarity). May participate in regulation of parathyroid-hormone and para-thyroid-hormone-related protein release.

Tissue specificity
Absorptive epithelia, including renal proximal tubules.

Involvement in disease
Defects in LRP2 are the cause of Donnai-Barrow syndrome (DBS) [MIM:222448]; also known as faciooculoacousticorenal syndrome (FOAR syndrome). DBS is a rare autosomal recessive disorder characterized by major malformations including agenesis of the corpus callosum, congenital diaphragmatic hernia, facial dysmorphology, ocular anomalies, sensorineural hearing loss and developmental delay. The FOAR syndrome was first described as comprising facial anomalies, ocular anomalies, sensorineural hearing loss, and proteinuria. DBS and FOAR were first described as distinct disorders but the classic distinguishing features between the 2 disorders were presence of proteinuria and absence of diaphragmatic hernia and corpus callosum anomalies in FOAR. Early reports noted that the 2 disorders shared many phenotypic features and may be identical. Although there is variability in the expression of some features (e.g. agenesis of the corpus callosum and proteinuria), DBS and FOAR are now considered to represent the same entity.

Sequence similarities
Belongs to the LDLR family.
Contains 17 EGF-like domains.
Contains 36 LDL-receptor class A domains.
Contains 37 LDL-receptor class B repeats.

Cellular localization
Membrane. Membrane > coated pit.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors