# Human MUC1 peptide ab94833

## Overview

<table>
<thead>
<tr>
<th>Product name</th>
<th>Human MUC1 peptide</th>
</tr>
</thead>
</table>

## Description

<table>
<thead>
<tr>
<th>Nature</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino Acid Sequence</td>
<td>Human</td>
</tr>
</tbody>
</table>

## Specifications

Our Abpromise guarantee covers the use of **ab94833** in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

<table>
<thead>
<tr>
<th>Applications</th>
<th>Blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purity</td>
<td>70 - 90% by HPLC.</td>
</tr>
</tbody>
</table>

| Form | Liquid |

<table>
<thead>
<tr>
<th>Additional notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>- First try to dissolve a small amount of peptide in either water or buffer. The more charged residues on a peptide, the more soluble it is in aqueous solutions.</td>
</tr>
<tr>
<td>- If the peptide doesn’t dissolve try an organic solvent e.g. DMSO, then dilute using water or buffer.</td>
</tr>
<tr>
<td>- Consider that any solvent used must be compatible with your assay. If a peptide does not dissolve and you need to recover it, lyophilise to remove the solvent.</td>
</tr>
<tr>
<td>- Gentle warming and sonication can effectively aid peptide solubilisation. If the solution is cloudy or has gelled the peptide may be in suspension rather than solubilised.</td>
</tr>
<tr>
<td>- Peptides containing cysteine are easily oxidised, so should be prepared in solution just prior to use.</td>
</tr>
</tbody>
</table>

## Preparation and Storage

<table>
<thead>
<tr>
<th>Stability and Storage</th>
<th>Shipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw cycles.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Information available upon request.</td>
</tr>
</tbody>
</table>
Function

The alpha subunit has cell adhesive properties. Can act both as an adhesion and an anti-adhesion protein. May provide a protective layer on epithelial cells against bacterial and enzyme attack.

The beta subunit contains a C-terminal domain which is involved in cell signaling, through phosphorylations and protein-protein interactions. Modulates signaling in ERK, SRC and NF-kappa-B pathways. In activated T-cells, influences directly or indirectly the Ras/MAPK pathway. Promotes tumor progression. Regulates TP53-mediated transcription and determines cell fate in the genotoxic stress response. Binds, together with KLF4, the PE21 promoter element of TP53 and represses TP53 activity.

Tissue specificity

Expressed on the apical surface of epithelial cells, especially of airway passages, breast and uterus. Also expressed in activated and unactivated T-cells. Overexpressed in epithelial tumors, such as breast or ovarian cancer and also in non-epithelial tumor cells. Isoform Y is expressed in tumor cells only.

Involvement in disease

MUC1/CA 15-3 is used as a serological clinical marker of breast cancer to monitor response to breast cancer treatment and disease recurrence (PubMed:20816948). Decreased levels over time may be indicative of a positive response to treatment. Conversely, increased levels may indicate disease progression. At an early stage disease, only 21% of patients exhibit high MUC1/CA 15-3 levels, that is why CA 15-3 is not a useful screening test. Most antibodies target the highly immunodominant core peptide domain of 20 amino acid (APDTRPAPGSTAPPAHGVTS) tandem repeats. Some antibodies recognize glycosylated epitopes.

Medullary cystic kidney disease 1

Sequence similarities

Contains 1 SEA domain.

Developmental stage

During fetal development, expressed at low levels in the colonic epithelium from 13 weeks of gestation.

Post-translational modifications

Highly glycosylated (N- and O-linked carbohydrates and sialic acid). O-glycosylated to a varying degree on serine and threonine residues within each tandem repeat, ranging from mono- to penta-glycosylation. The average density ranges from about 50% in human milk to over 90% in T47D breast cancer cells. Further sialylation occurs during recycling. Membrane-shed glycoproteins from kidney and breast cancer cells have preferentially sialylated core 1 structures, while secreted forms from the same tissues display mainly core 2 structures. The O-glycosylated content is overlapping in both these tissues with terminal fucose and galactose, 2- and 3-linked galactose, 3- and 3,6-linked GaINAc-ol and 4-linked GlcNAc predominating. Differentially O-glycosylated in breast carcinomas with 3,4-linked GlcNAc. N-glycosylation consists of high-mannose, acidic complex-type and hybrid glycans in the secreted form MUC1/SEC, and neutral complex-type in the transmembrane form, MUC1/TM.

Proteolytic cleavage in the SEA domain occurs in the endoplasmic reticulum by an autoproteolytic mechanism and requires the full-length SEA domain as well as requiring a Ser, Thr or Cys residue at the P + 1 site. Cleavage at this site also occurs on isoform MUC1/X but not on isoform MUC1/Y. Ectodomain shedding is mediated by ADAM17.

Dual palmitoylation on cysteine residues in the CQC motif is required for recycling from endosomes back to the plasma membrane.

Phosphorylated on tyrosines and serine residues in the C-terminal. Phosphorylation on tyrosines in the C-terminal increases the nuclear location of MUC1 and beta-catenin. Phosphorylation by PKC delta induces binding of MUC1 to beta-catenin/CTNNB1 and thus decreases the formation of the beta-catenin/E-cadherin complex. Src-mediated phosphorylation inhibits interaction with GSK3B. Src- and EGFR-mediated phosphorylation on Tyr-1229 increases binding to beta-catenin/CTNNB1. GSK3B-mediated phosphorylation on Ser-1227 decreases this interaction but
restores the formation of the beta-cadherin/E-cadherin complex. On T-cell receptor activation,
phosphorylated by LCK. PDGFR-mediated phosphorylation increases nuclear colocalization of
MUC1CT and CTNNB1.

The N-terminal sequence has been shown to begin at position 24 or 28.

**Cellular localization**

Secreted; Cell membrane. Cytoplasm. Nucleus. On EGF and PDGFRB stimulation, transported to
the nucleus through interaction with CTNNB1, a process which is stimulated by phosphorylation.
On HRG stimulation, colocalizes with JUP/gamma-catenin at the nucleus and Apical cell
membrane. Exclusively located in the apical domain of the plasma membrane of highly polarized
epithelial cells. After endocytosis, internalized and recycled to the cell membrane. Located to
microvilli and to the tips of long filopodial protusions.

---

**Please note:** All products are “FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE”

**Our Abpromise to you: Quality guaranteed and expert technical support**

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit [https://www.abcam.com/abpromise](https://www.abcam.com/abpromise) or contact our technical team.

**Terms and conditions**

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors