Product name: Anti-IGF1 Receptor (phospho Y1161) antibody

Description: Rabbit polyclonal to IGF1 Receptor (phospho Y1161)

Host species: Rabbit

Specificity: Ab39398 detects endogenous levels of IGF1 Receptor only when phosphorylated at tyrosine 1161.

Tested applications: Suitable for: IHC-Fr, IHC-FoFr, ICC, IHC-P, WB, ELISA, IP, IHC-FrFl, ICC/IF

Species reactivity: Reacts with: Mouse, Rat, Human

Immunogen: Synthetic phospho-peptide derived from human IGF1 receptor around the phosphorylation site of tyrosine 1161

Form: Liquid

Storage instructions: Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.

Storage buffer: pH: 7.40
Preservative: 0.02% Sodium azide
Constituents: 50% Glycerol, 0.87% Sodium chloride, PBS

Purity: Immunogen affinity purified

Purification notes: ab39398 was affinity purified from rabbit antiserum by affinity chromatography using an epitope specific phosphopeptide. The antibody against non-phosphopeptide was removed by chromatography using a non-phosphopeptide corresponding to the phosphorylation site.

Clonality: Polyclonal

Isotype: IgG

Applications:

Our Abpromise guarantee covers the use of ab39398 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
Function

Receptor tyrosine kinase which mediates actions of insulin-like growth factor 1 (IGF1). Binds IGF1 with high affinity and IGF2 and insulin (INS) with a lower affinity. The activated IGFR1 is involved in cell growth and survival control. IGFR1 is crucial for tumor transformation and survival of malignant cell. Ligand binding activates the receptor kinase, leading to receptor autophosphorylation, and tyrosines phosphorylation of multiple substrates, that function as signaling adapter proteins including, the insulin-receptor substrates (IRS1/2), Shc and 14-3-3 proteins. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway and the Ras-MAPK pathway. The result of activating the MAPK pathway is increased cellular proliferation, whereas activating the PI3K pathway inhibits apoptosis and stimulates protein synthesis. Phosphorylated IRS1 can activate the 85 kDa regulatory subunit of PI3K (PIK3R1), leading to activation of several downstream substrates, including protein AKT/PKB. AKT phosphorylation, in turn, enhances protein synthesis through mTOR activation and triggers the antiapoptotic effects of IGFR through phosphorylation and inactivation of BAD. In parallel to PI3K-driven signaling, recruitment of Grb2/SOS by phosphorylated IRS1 or Shc leads to recruitment of Ras and activation of the ras-MAPK pathway. In addition to these two main signaling pathways IGFR signals also through the Janus kinase/signal transducer and activator of transcription pathway (JAK/STAT). Phosphorylation of JAK proteins can lead to phosphorylation/activation of signal transducers and activators of transcription (STAT) proteins. In particular activation of STAT3, may be essential for the transforming activity of IGFR1. The JAK/STAT pathway activates gene transcription and may be responsible for the transforming activity. JNK kinases can also be activated by the IGFR1. IGF1 exerts inhibiting activities on JNK activation via phosphorylation and inhibition of MAP3K5/ASK1, which is able to directly associate with the IGFR1.

When present in a hybrid receptor with INSR, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGFR1 and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGFR1 and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGFR1 and INSR isoform Long and hybrid receptors composed of IGFR1 and INSR isoform Short have similar binding

Target

<table>
<thead>
<tr>
<th>Application</th>
<th>Abreviews</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHC-Fr</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
<tr>
<td>IHC-FoFr</td>
<td>1/100. PubMed: 18216249</td>
<td></td>
</tr>
<tr>
<td>ICC</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
<tr>
<td>IHC-P</td>
<td>1/50 - 1/100.</td>
<td></td>
</tr>
<tr>
<td>ELISA</td>
<td>1/20000.</td>
<td></td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
<tr>
<td>IHC-FrFl</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
<tr>
<td>ICC/IF</td>
<td></td>
<td>Use at an assay dependent concentration.</td>
</tr>
</tbody>
</table>
characteristics, both bind IGF1 and have a low affinity for insulin.

Tissue specificity
Found as a hybrid receptor with INSR in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Expressed in a variety of tissues. Overexpressed in tumors, including melanomas, cancers of the colon, pancreas prostate and kidney.

Involvement in disease
Insulin-like growth factor 1 resistance

Sequence similarities
Belongs to the protein kinase superfamily. Tyr protein kinase family. Insulin receptor subfamily.
Contains 4 fibronectin type-III domains.
Contains 1 protein kinase domain.

Post-translational modifications
Autophosphorylated on tyrosine residues in response to ligand binding. Autophosphorylation occurs in trans, i.e. one subunit of the dimeric receptor phosphorylates tyrosine residues on the other subunit. Autophosphorylation occurs in a sequential manner; Tyr-1165 is predominantly phosphorylated first, followed by phosphorylation of Tyr-1161 and Tyr-1166. While every single phosphorylation increases kinase activity, all three tyrosine residues in the kinase activation loop (Tyr-1165, Tyr-1161 and Tyr-1166) have to be phosphorylated for optimal activity. Can be autophosphorylated at additional tyrosine residues (in vitro). Autophosphorylated is followed by phosphorylation of juxtamembrane tyrosines and C-terminal serines. Phosphorylation of Tyr-980 is required for IRS1- and SHC1-binding. Phosphorylation of Ser-1278 by GSK-3-beta restrains kinase activity and promotes cell surface expression, it requires a priming phosphorylation at Ser-1282. Dephosphorylated by PTPN1.
Polyubiquitinated at Lys-1168 and Lys-1171 through both 'Lys-48' and 'Lys-29' linkages, promoting receptor endocytosis and subsequent degradation by the proteasome. Ubiquitination is facilitated by pre-existing phosphorylation.
Sumoylated with SUMO1.
Controlled by regulated intramembrane proteolysis (RIP). Undergoes metalloprotease-dependent constitutive ectodomain shedding to produce a membrane-anchored 52 kDa C-Terminal fragment which is further processed by presenilin gamma-secretase to yield an intracellular 50 kDa fragment.

Cellular localization
Cell membrane.

Images
Western blot analysis using IGF1 Receptor antibody (ab39675, Lane 1, 2 and 3) and IGF1 Receptor (phospho-Tyr1161) antibody (ab39398, Lane 4 and 5).
Immunocytochemistry/ Immunofluorescence - Anti-IGF1 Receptor (phospho Y1161) antibody (ab39398)
This image is courtesy of an anonymous abreview.

Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) analysis of human stomach tissue sections labeling IGF1 Receptor (phospho Y1161) with ab39398 at 1/100 dilution. The tissue was fixed with formaldehyde; heat mediated antigen retrieval was performed using a citrate buffer pH 6.0. The tissue was blocked with 5% serum for 1 hour at 23°C followed by incubation with ab39398 at 1/100 for 1 hour at 23°C. An undiluted polyclonal goat anti-rabbit HRP conjugated secondary antibody was used.

Immunofluorescence analysis of murine blastocyst, staining IGF1 Receptor (phospho Y1161) (green) with ab39398.

Blastocysts were fixed with paraformaldehyde and permeabilized with 0.3% Triton X-100 for 5 minutes. Samples were incubated with primary antibody diluted in 2.5% BSA. An AlexaFluor®488-conjugated anti-rabbit IgG was used as the secondary antibody. Nuclei were stained with DAPI (blue).
Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using ab39398 diluted 1:50.

Please note: All products are "FOR RESEARCH USE ONLY AND ARE NOT INTENDED FOR DIAGNOSTIC OR THERAPEUTIC USE"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors