Product datasheet

Anti-p53 antibody [EPR17343] ab179477

Overview

Product name Anti-p53 antibody [EPR17343]
Description Rabbit monoclonal [EPR17343] to p53
Host species Rabbit
Specificity Based on the results of the knockout validation testing this antibody may not be suitable for IHC-P, Flow Cyt, IP or ChIP. Please contact our Scientific Support team for additional information.

Tested applications
Suitable for: WB, ICC/IF

Species reactivity
Reacts with: Human

Immunogen Recombinant fragment within Human p53 aa 1-150. The exact sequence is proprietary. Database link: P04637

General notes Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
This product is a recombinant rabbit monoclonal antibody.

Properties

Form Liquid
Storage buffer Preservative: 0.01% Sodium azide
Constituents: 59% PBS, 40% Glycerol, 0.05% BSA
Purity Protein A purified
Clonality Monoclonal
Clone number EPR17343
Isotype IgG

Applications
Function
Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a transactivator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Implicated in Notch signaling cross-over. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.

Tissue specificity
Ubiquitous. Isoforms are expressed in a wide range of normal tissues but in a tissue-dependent manner. Isoform 2 is expressed in most normal tissues but is not detected in brain, lung, prostate, muscle, fetal brain, spinal cord and fetal liver. Isoform 3 is expressed in most normal tissues but is not detected in lung, spleen, testis, fetal brain, spinal cord and fetal liver. Isoform 7 is expressed in most normal tissues but is not detected in prostate, uterus, skeletal muscle and breast. Isoform 8 is detected only in colon, bone marrow, testis, fetal brain and intestine. Isoform 9 is expressed in most normal tissues but is not detected in brain, heart, lung, fetal liver, salivary gland, breast or intestine.

Involvement in disease
Note=TP53 is found in increased amounts in a wide variety of transformed cells. TP53 is frequently mutated or inactivated in about 60% of cancers. TP53 defects are found in Barrett metaplasia a condition in which the normally stratified squamous epithelium of the lower esophagus is replaced by a metaplastic columnar epithelium. The condition develops as a complication in approximately 10% of patients with chronic gastroesophageal reflux disease and predisposes to the development of esophageal adenocarcinoma. Defects in TP53 are a cause of esophageal cancer (ESCR) [MIM:133239].
Defects in TP53 are a cause of Li-Fraumeni syndrome (LFS) [MIM:151623]. LFS is an autosomal dominant familial cancer syndrome that in its classic form is defined by the existence of a proband affected by a sarcoma before 45 years with a first degree relative affected by any tumor before 45 years and another first degree relative with any tumor before 45 years or a sarcoma at any age. Other clinical definitions for LFS have been proposed (PubMed:8118819 and PubMed:8718514) and called Li-Fraumeni like syndrome (LFL). In these families affected relatives develop a diverse set of malignancies at unusually early ages. Four types of cancers account for 80% of tumors occurring in TP53 germline mutation carriers: breast cancers, soft tissue and bone sarcomas, brain tumors (astrocytomas) and adrenocortical carcinomas. Less frequent tumors include choroid plexus carcinoma or papilloma before the age of 15, rhabdomyosarcoma before the age of 5, leukemia, Wilms tumor, malignant phyllodes tumor, colorectal and gastric cancers. Defects in TP53 are involved in head and neck squamous cell carcinomas (HNSCC) [MIM:275355]; also known as squamous cell carcinoma of the head and neck. Defects in TP53 are a cause of lung cancer (LNCR) [MIM:211980].
Defects in TP53 are a cause of choroid plexus papilloma (CPLPA) [MIM:260500]. Choroid plexus papilloma is a slow-growing benign tumor of the choroid plexus that often invades the leptomeninges. In children it is usually in a lateral ventricle but in adults it is more often in the fourth ventricle. Hydrocephalus is common, either from obstruction or from tumor secretion of cerebrospinal fluid. If it undergoes malignant transformation it is called a choroid plexus carcinoma. Primary choroid plexus tumors are rare and usually occur in early childhood.

Defects in TP53 are a cause of adrenocortical carcinoma (ADCC) [MIM:202300]. ADCC is a rare childhood tumor of the adrenal cortex. It occurs with increased frequency in patients with the Beckwith-Wiedemann syndrome and is a component tumor in Li-Fraumeni syndrome.

Sequence similarities

Belongs to the p53 family.

Domain

The nuclear export signal acts as a transcriptional repression domain. The TAD-I and TAD-II motifs (residues 17 to 25 and 48 to 56) correspond both to 9aaTAD motifs which are transactivation domains present in a large number of yeast and animal transcription factors.

Post-translational modifications

Acetylated. Acetylation of Lys-382 by CREBBP enhances transcriptional activity. Deacetylation of Lys-382 by SIRT1 impairs its ability to induce proapoptotic program and modulate cell senescence.

Phosphorylation on Ser residues mediates transcriptional activation. Phosphorylated by HIPK1 (By similarity). Phosphorylation at Ser-9 by HIPK4 increases repression activity on BIRC5 promoter. Phosphorylated on Thr-18 by VRK1. Phosphorylated on Ser-20 by CHEK2 in response to DNA damage, which prevents ubiquitination by MDM2. Phosphorylated on Thr-55 by TAF1, which promotes MDM2-mediated degradation. Phosphorylated on Ser-46 by HIPK2 upon UV irradiation. Phosphorylation on Ser-46 is required for acetylation by CREBBP. Phosphorylated on Ser-392 following UV but not gamma irradiation. Phosphorylated upon DNA damage, probably by ATM or ATR. Phosphorylated on Ser-15 upon ultraviolet irradiation; which is enhanced by interaction with BANP.

Dephosphorylated by PP2A-PPP2R5C holoenzyme at Thr-55. SV40 small T antigen inhibits the dephosphorylation by the AC form of PP2A.

May be O-glycosylated in the C-terminal basic region. Studied in EB-1 cell line. Ubiquitinated by MDM2 and SYVN1, which leads to proteasomal degradation. Ubiquitinated by RFWD3, which works in cooperation with MDM2 and may catalyze the formation of short polyubiquitin chains on p53/TP53 that are not targeted to the proteasome. Ubiquitinated by MKRN1 at Lys-291 and Lys-292, which leads to proteasomal degradation. Deubiquitinated by USP10, leading to its stabilization. Ubiquitinated by TRIM24, which leads to proteasomal degradation. Ubiquitination by TOPORS induces degradation. Deubiquitination by USP7, leading to stabilization. Isoform 4 is monoubiquitinated in an MDM2-independent manner.

Monomethylated at Lys-372 by SETD7, leading to stabilization and increased transcriptional activation. Monomethylated at Lys-370 by SMYD2, leading to decreased DNA-binding activity and subsequent transcriptional regulation activity. Lys-372 monomethylation prevents interaction with SMYD2 and subsequent monomethylation at Lys-370. Dimethylated at Lys-373 by EHMT1 and EHMT2. Monomethylated at Lys-382 by SETD8, promoting interaction with L3MBTL1 and leading to repression transcriptional activity. Demethylation of dimethylated Lys-370 by KDM1A prevents interaction with TP53BP1 and represses TP53-mediated transcriptional activation. Sumoylated by SUMO1.

Cellular localization

Cytoplasm; Nucleus. Nucleus > PML body. Endoplasmic reticulum. Interaction with BANP promotes nuclear localization. Recruited into PML bodies together with CHEK2; Nucleus. Cytoplasm. Localized in both nucleus and cytoplasm in most cells. In some cells, forms foci in the nucleus that are different from nucleoli; Nucleus. Cytoplasm. Localized in the nucleus in most cells but found in the cytoplasm in some cells; Nucleus. Cytoplasm. Localized mainly in the nucleus with minor staining in the cytoplasm; Nucleus. Cytoplasm. Predominantly nuclear but localizes to the cytoplasm when expressed with isoform 4 and Nucleus. Cytoplasm. Predominantly nuclear but
translocates to the cytoplasm following cell stress.

Lane 1: Wild-type HAP1 cell lysate (20 µg)
Lane 2: p53 knockout HAP1 cell lysate (20 µg)
Lane 3: A431 cell lysate (20 µg)
Lane 4: Saos-2 cell lysate (20 µg)
Lanes 1 - 4: Merged signal (red and green). Green - ab179477 observed at 53 kDa. Red - loading control, ab8226, observed at 42 kDa.

ab179477 was shown to specifically react with p53 in wild type HAP1 cells along with additional cross reactive bands. No band was observed with p53 knockout samples were used.

Wild-type and p53 knockout samples were subjected to SDS-PAGE. ab179477 and ab8226 (loading control to beta Actin) were diluted to 1/2000 and 1/1000 respectively and incubated overnight at 4°C. Blots were developed with Goat anti-Rabbit IgG H&L (IRDye® 800CW) preadsorbed (ab216773) and Goat anti-Mouse IgG H&L (IRDye® 680RD) preadsorbed (ab216776) secondary antibodies at 1/10 000 dilution for 1 h at room temperature before imaging.

ab179477 staining p53 in wild-type HAP1 cells (top panel) and p53 knockout HAP1 cells (bottom panel). The cells were fixed with methanol (5min), permeabilized with 0.1% Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated with ab179477 at 1/500 dilution and ab195889 at 1/250 dilution (shown in pseudo colour red) overnight at +4°C, followed by a further incubation at room temperature for 1h with a goat secondary antibody to Rabbit IgG (Alexa Fluor® 488) (ab150081) at 2 µg/ml (shown in green). Nuclear DNA was labelled in blue with DAPI.

Immunocytochemistry/ Immunofluorescence - Anti-p53 antibody [EPR17343] (ab179477)

Western blot - Anti-p53 antibody [EPR17343] (ab179477)
All lanes: Anti-p53 antibody [EPR17343] (ab179477) at 1/2000 dilution

Lane 1: Untreated HCT 116 (Human colorectal carcinoma) whole cell lysate
Lane 2: HCT 116 (Human colorectal carcinoma) whole cell lysate with 0.5µM Doxorubicin for 24 hours whole cell lysate

Secondary
All lanes: Goat Anti-Rabbit IgG H&L (HRP) (ab97051) at 1/20000 dilution (Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated)

Predicted band size: 44 kDa
Observed band size: 53 kDa
why is the actual band size different from the predicted?

Blocking/dilution buffer: 5% NFDM/TBST.

Anti-p53 antibody [EPR17343] (ab179477) at 1/20000 dilution + T-47D (Human ductal breast epithelial carcinoma cell line) whole cell lysates at 20 µg

Secondary
Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/1000 dilution

Predicted band size: 44 kDa
Observed band size: 44, 53 kDa
why is the actual band size different from the predicted?
All lanes: Anti-p53 antibody [EPR17343] (ab179477) at 1/2000 dilution

Lane 1: HEK-293 (Human epithelial cells from embryonic kidney) whole cell lysates
Lane 2: A431 (Human epidermoid carcinoma) whole cell lysates
Lane 3: Saos-2 (Human osteosarcoma cell line) whole cell lysates
Lane 4: HL-60 (Human promyelocytic leukemia cells) whole cell lysates
Lane 5: PC-3 (Human prostate adenocarcinoma cell line) whole cell lysates

Lysates/proteins at 20 µg per lane.

Secondary
All lanes: Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated at 1/1000 dilution

Predicted band size: 44 kDa
Observed band size: 53, 44 kDa why is the actual band size different from the predicted?

Blocking and Diluting buffer and concentration: 5% NFDM/TBST.

Saos-2, PC-3 and HL-60 cells are p53 null cell lines.

Please note: All products are “FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES”

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors