abcam

Product datasheet

Human FERMT2 (Kindlin 2) knockout HeLa cell lysate ab257436

2 Images

Overview

Product name Human FERMT2 (Kindlin 2) knockout HeLa cell lysate

Product overview

Knockout cell lysate achieved by CRISPR/Cas9.

Parental Cell Line HeLa

Organism Human

Mutation description Knockout achieved by using CRISPR/Cas9, Homozygous: 1 bp deletion in exon 2.

Passage number <20

Knockout validation Sanger Sequencing, Western Blot (WB)

Reconstitution notesTo use as WB control, resuspend the lyophilizate in 50 μL of LDS* Sample Buffer to have a final

concentration of 2 mg/ml. For reducing conditions, we recommend a final concentration of 0.1 M

DTT.

*Usage of SDS sample buffer is not recommended with these lyophilized lysates.

Notes

Lysate preparation: Our lysates are made using RIPA buffer to which we add a protease

inhibitor cocktail and phosphatase inhibitor cocktail (ratio: 300:100:10). *This means that the protein of interest is denatured.* If you require a native form of the protein please use the live cell version - found **here**. Please refer to our lysis protocol for further details on how our lysates are

prepared.

User storage instructions: Lyophilizate may be stored at 4°C. After reconstitution, store at -

20°C for short-term storage or -80°C for long-term storage.

Access thousands of knockout cell lysates, generated from commonly used cancer cell lines.

See here for more information on knockout cell lysates.

Abcam has not and does not intend to apply for the REACH Authorisation of customers' uses of

products that contain European Authorisation list (Annex XIV) substances.

It is the responsibility of our customers to check the necessity of application of REACH

Authorisation, and any other relevant authorisations, for their intended uses.

This product is subject to limited use licenses from The Broad Institute and ERS Genomics

Limited, and is developed with patented technology. For full details of the limited use licenses and

relevant patents please refer to our <u>limited use license</u> and <u>patent pages</u>.

Tested applications Suitable for: WB

1

Properties

Storage instructions Store at -80°C. Please refer to protocols.

Components	1 kit
ab260988 - Human FERMT2 knockout HeLa cell lysate	1 x 100µg
ab255929 - Human wild-type HeLa cell lysate	1 x 100µg

Cell type epithelial

Disease Adenocarcinoma

Gender Female

STR Analysis Amelogenin X D5S818: 11, 12 D13S317: 12, 13.3 D7S820: 8, 12 D16S539: 9, 10 vWA: 16, 18

TH01: 7 TPOX: 8, 12 CSF1PO: 9, 10

Target

Function Participates in the connection between ECM adhesion sites and the actin cytoskeleton and also

in the orchestration of actin assembly and cell shape modulation. Recruits migfilin (FBLP1)

protein to cell-ECM focal adhesion sites.

Tissue specificity Ubiquitous. Found in numerous tumor tissues.

Sequence similarities Belongs to the kindlin family.

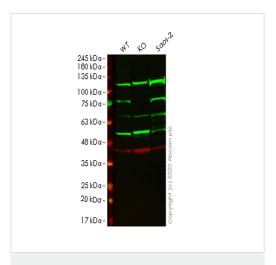
Contains 1 FERM domain.
Contains 1 PH domain.

DomainThe FERM domain is not correctly detected by PROSITE or Pfam techniques because it contains

the insertion of a PH domain.

Cellular localization Cytoplasm > cell cortex. Cytoplasm > cytoskeleton. Cell junction > focal adhesion. Within actin

stress fibers at cell-ECM focal adhesion sites.


Applications

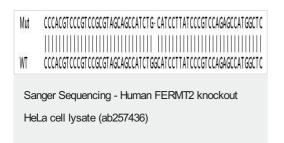
The Abpromise guarantee Our <u>Abpromise guarantee</u> covers the use of ab257436 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
WB		Use at an assay dependent concentration. Predicted molecular weight: 78 kDa.

Images

Western blot - Human FERMT2 knockout HeLa cell lysate (ab257436)


Lane 1: Wild-type HeLa cell lysate (20 µg)

Lane 2: FERMT2 knockout HeLa cell lysate (20 µg)

Lane 3: Saos-2 cell lysate (20 µg)

Lanes 1-3: Merged signal (red and green). Green - <u>ab74030</u> observed at 78 kDa. Red - loading control <u>ab8245</u> observed at 36 kDa.

ab74030 Anti-Kindlin 2 antibody was shown to specifically react with Kindlin 2 in wild-type HeLa cells. Loss of signal was observed when knockout cell line ab265247 (knockout cell lysate ab257436) was used. Wild-type and Kindlin 2 knockout samples were subjected to SDS-PAGE. ab74030 and Anti-GAPDH antibody [6C5] - Loading Control (ab8245) were incubated overnight at 4°C at 1 in 500 dilution and 1 in 20000 dilution respectively. Blots were developed with Goat anti-Rabbit IgG H&L (IRDye® 800CW) preadsorbed (ab216773) and Goat anti-Mouse IgG H&L (IRDye® 680RD) preadsorbed (ab216776) secondary antibodies at 1 in 20000 dilution for 1 hour at room temperature before imaging.

Homozygous: 1 bp deletion in exon 2

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- · We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				
		4			