For the best experience on the Abcam website please upgrade to a modern browser such as Google Chrome

Hello. We're improving abcam.com and we'd welcome your feedback.

Hello. We're improving abcam.com and we'd welcome your feedback.

Infomation icon

We haven't added this to the BETA yet

New BETA website

New BETA website

Hello. We're improving abcam.com and we'd welcome your feedback.

Take a look at our BETA site and see what we’ve done so far.

Switch on our new BETA site

Now available

Search and browse selected products

  • A selection of primary antibodies

Purchase these through your usual distributor

In the coming months

  • Additional product types
  • Supporting content
  • Sign in to your account
  • Purchase online
United States
Your country/region is currently set to:

If incorrect, please enter your country/region into the box below, to view site information related to your country/region.

Call (888) 77-ABCAM (22226) or contact us
Need help? Contact us

  • My account
  • Sign out
Sign in or Register with us

Welcome

Sign in or

Don't have an account?

Register with us
My basket
Quick order
Abcam homepage

  • Research Products
    By product type
    Primary antibodies
    Secondary antibodies
    ELISA and Matched Antibody Pair Kits
    Cell and tissue imaging tools
    Cellular and biochemical assays
    Proteins and Peptides
    By product type
    Proteomics tools
    Agonists, activators, antagonists and inhibitors
    Cell lines and Lysates
    Multiplex miRNA assays
    Multiplex Assays
    By research area
    Cancer
    Cardiovascular
    Cell Biology
    Epigenetics
    Metabolism
    Developmental Biology
    By research area
    Immunology
    Microbiology
    Neuroscience
    Signal Transduction
    Stem Cells
  • Customized Products & Partnerships
    Customized Products & Partnerships

    Customized products and commercial partnerships to accelerate your diagnostic and therapeutic programs.

    Customized products

    Partner with us

  • Support
    Support hub

    Access advice and support for any research roadblock

    View support hub

    Protocols

    Your experiments laid out step by step

    View protocols

  • Events
    • Conference calendar
    • Cancer
    • Cardiovascular
    • Epigenetics & Nuclear signaling
    • Immunology
    • Neuroscience
    • Stem cells
    • Tradeshows
    • Scientific webinars
    Keep up to date with the latest events

    Full event breakdown with abstracts, speakers, registration and more

    View global event calendar

  • Pathways
    Cell signalling pathways

    View all pathways

    View all interactive pathways

  1. Link

    products/elisa/human-sirt1-elisa-kit-ab171573.pdf

  1. Send me a copy of this email
    I agree to the terms and conditions.
Cell Biology Apoptosis Intracellular p53 Pathway
Share by email
SimpleStep

Human SIRT1 ELISA Kit (ab171573)

  • Datasheet
  • SDS
  • Protocol Booklet
Reviews (2) Submit a question References (8)

Product price, shipping and contact information

Currently unavailable

Sorry, we can't display this right now.

Please contact us to place your order, or try again later.

 

Loading size & price…

 

Shipping and order information

Shipping info

Promotion Information

Abpromise

Guaranteed product quality, expert customer support.

Find out more.

Other - Human SIRT1 ELISA Kit (ab171573)
  • Example SIRT1 standard curve
  • Titration of HeLa extract within the working range of the assay
  • Comparison of SIRT1 expression in different cell lines
  • Quantitation of SIRT1 expression in different cell lines
  • Immunocytochemical staining.

Key features and details

  • One-wash 90 minute protocol
  • Sensitivity: 132 pg/ml
  • Range: 0.63 ng/ml - 40 ng/ml
  • Sample type: Cell culture extracts, Tissue Extracts
  • Detection method: Colorimetric
  • Assay type: Sandwich (quantitative)
  • Reacts with: Human

You may also be interested in

ELISA
Product image
Human IgG ELISA Kit (ab100547)
ELISA
Product image
Human p53 ELISA Kit (ab171571)
Primary
Product image
Anti-SIRT1 antibody [EPR18239] (ab189494)

View more associated products

Overview

  • Product name

    Human SIRT1 ELISA Kit
    See all SIRT1 kits
  • Detection method

    Colorimetric
  • Precision

    Intra-assay
    Sample n Mean SD CV%
    Overall 5 2%
    Inter-assay
    Sample n Mean SD CV%
    Overall 3 4.1%
  • Sample type

    Cell culture extracts, Tissue Extracts
  • Assay type

    Sandwich (quantitative)
  • Sensitivity

    132 pg/ml
  • Range

    0.63 ng/ml - 40 ng/ml
  • Recovery

    Sample specific recovery
    Sample type Average % Range
    Cell culture media 94 90% - 101%
    Fetal Bovine Serum 84 83% - 85%
    Bovine Serum Albumin 107 106% - 107%
  • Assay time

    1h 30m
  • Assay duration

    One step assay
  • Species reactivity

    Reacts with: Human
  • Product overview

    Human SIRT1 ELISA kit (ab171573) is a single-wash 90 min sandwich ELISA designed for the quantitative measurement of SIRT1 protein in human cell samples. It uses our proprietary SimpleStep ELISA® technology. Quantitate human SIRT1 with 132 pg/ml sensitivity.

    SimpleStep ELISA® technology employs capture antibodies conjugated to an affinity tag that is recognized by the monoclonal antibody used to coat our SimpleStep ELISA® plates. This approach to sandwich ELISA allows the formation of the antibody-analyte sandwich complex in a single step, significantly reducing assay time. See the SimpleStep ELISA® protocol summary in the image section for further details. Our SimpleStep ELISA® technology provides several benefits:

            -Single-wash protocol reduces assay time to 90 minutes or less
            -High sensitivity, specificity and reproducibility from superior antibodies
            -Fully validated in biological samples
            -96-wells plate breakable into 12 x 8 wells strips

    A 384-well SimpleStep ELISA® microplate (ab203359) is available to use as an alternative to the 96-well microplate provided with SimpeStep ELISA® kits.

  • Notes

    SIRT1 - silent mating type information regulation 2 homolog (homolog of yeast Sir2) – encodes a member of the sirtuins family of deacetylases. The sirtuin 1 protein (gene SIRT1) is responsible for epigenetic gene silencing after recruitment to the nucleus. Sirtuin1 deactylates proteins, including histones, in a wide (and growing) variety of processes in apoptosis and senescence, muscle differentiation and may serve as a cytosolic NAD+/NADH sensor. This enzyme may also regulate the circadian clock of the cell in response to metabolic conditions. SIRT1 is inhibited by nicotinamide and may be activated by resveratrol, a component of red wine. Resveratrol may participate in activation of sirtuin proteins, and may therefore participate in an extended lifespan as it has been observed in yeast.

    Abcam has not and does not intend to apply for the REACH Authorisation of customers’ uses of products that contain European Authorisation list (Annex XIV) substances.
    It is the responsibility of our customers to check the necessity of application of REACH Authorisation, and any other relevant authorisations, for their intended uses.

  • Platform

    Microplate

Properties

  • Storage instructions

    Store at +4°C. Please refer to protocols.
  • Components 1 x 96 tests
    10X Human SIRT1 Capture Antibody 1 x 600µl
    10X Human SIRT1 Detector Antibody 1 x 600µl
    10X Wash Buffer PT (ab206977) 1 x 20ml
    50X Cell Extraction Enhancer Solution (ab193971) 1 x 1ml
    5X Cell Extraction Buffer PTR (ab193970) 1 x 10ml
    Antibody Diluent 5B 1 x 6ml
    Human SIRT1 Lyophilized Recombinant Protein 2 vials
    Plate Seals 1 unit
    Sample Diluent NS (ab193972) 1 x 12ml
    SimpleStep Pre-Coated 96-Well Microplate (ab206978) 1 unit
    Stop Solution 1 x 12ml
    TMB Development Solution 1 x 12ml
  • Research areas

    • Cell Biology
    • Apoptosis
    • Intracellular
    • p53 Pathway
    • Epigenetics and Nuclear Signaling
    • Chromatin Modifying Enzymes
    • Acetylation
    • Microbiology
    • Interspecies Interaction
    • Host Virus Interaction
    • Epigenetics and Nuclear Signaling
    • DNA / RNA
    • DNA Damage & Repair
    • Homologous Recomb.
    • Tags & Cell Markers
    • Subcellular Markers
    • Nucleus
    • Other Nuclear Bodies
    • Epigenetics and Nuclear Signaling
    • Chromatin Modifying Enzymes
    • Acetylation
    • HDACs
    • Class III / Sir2 class
    • Kits/ Lysates/ Other
    • Kits
    • ELISA Kits
    • ELISA Kits
    • Apoptosis marker and proteins ELISA kits
    • Kits/ Lysates/ Other
    • Kits
    • ELISA Kits
    • ELISA Kits
    • DNA Damage ELISA kits
    • Metabolism
    • Types of disease
    • Obesity
  • Function

    NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates 'Lys-266' of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and 'Lys-26' of HIST1H1E. Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62'. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacteylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletel muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacteylates MECOM/EVI1. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes throug
    Isoform 2: Isoform 2 is shown to deacetylate 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop.
    (Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection.
    SirtT1 75 kDa fragment: catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly.
  • Tissue specificity

    Widely expressed.
  • Sequence similarities

    Belongs to the sirtuin family. Class I subfamily.
    Contains 1 deacetylase sirtuin-type domain.
  • Post-translational
    modifications

    Methylated on multiple lysine residues; methylation is enhanced after DNA damage and is dispensable for deacetylase activity toward p53/TP53.
    Phosphorylated. Phosphorylated by STK4/MST1, resulting in inhibition of SIRT1-mediated p53/TP53 deacetylation. Phosphorylation by MAPK8/JNK1 at Ser-27, Ser-47, and Thr-530 leads to increased nuclear localization and enzymatic activity. Phosphorylation at Thr-530 by DYRK1A and DYRK3 activates deacetylase activity and promotes cell survival. Phosphorylation by mammalian target of rapamycin complex 1 (mTORC1) at Ser-47 inhibits deacetylation activity. Phosphorylated by CaMK2, leading to increased p53/TP53 and NF-kappa-B p65/RELA deacetylation activity (By similarity). Phosphorylation at Ser-27 implicating MAPK9 is linked to protein stability. There is some ambiguity for some phosphosites: Ser-159/Ser-162 and Thr-544/Ser-545.
    Proteolytically cleaved by cathepsin B upon TNF-alpha treatment to yield catalytic inactive but stable SirtT1 75 kDa fragment (75SirT1).
    S-nitrosylated by GAPDH, leading to inhibit the NAD-dependent protein deacetylase activity.
  • Cellular localization

    Cytoplasm. Mitochondrion and Nucleus, PML body. Cytoplasm. Nucleus. Recruited to the nuclear bodies via its interaction with PML (PubMed:12006491). Colocalized with APEX1 in the nucleus (PubMed:19934257). May be found in nucleolus, nuclear euchromatin, heterochromatin and inner membrane (PubMed:15469825). Shuttles between nucleus and cytoplasm (By similarity). Colocalizes in the nucleus with XBP1 isoform 2 (PubMed:20955178).
  • Target information above from: UniProt accession Q96EB6 The UniProt Consortium
    The Universal Protein Resource (UniProt) in 2010
    Nucleic Acids Res. 38:D142-D148 (2010) .

    Information by UniProt
  • Alternative names

    • 75SirT1
    • hSIR2
    • hSIRT1
    • HST2
    • HST2, S. cerevisiae, homolog of
    • NAD dependent deacetylase sirtuin 1
    • NAD dependent protein deacetylase sirtuin 1
    • NAD-dependent deacetylase sirtuin-1
    • OTTHUMP00000198111
    • OTTHUMP00000198112
    • Regulatory protein SIR2 homolog 1
    • SIR1_HUMAN
    • SIR2
    • SIR2 like 1
    • SIR2 like protein 1
    • SIR2, S.cerevisiae, homolog-like 1
    • SIR2-like protein 1
    • SIR2ALPHA
    • SIR2L1
    • Sirt1
    • SirtT1 75 kDa fragment
    • Sirtuin (silent mating type information regulation 2 homolog) 1 (S. cerevisiae)
    • Sirtuin 1
    • Sirtuin type 1
    see all
  • Database links

    • Entrez Gene: 23411 Human
    • Omim: 604479 Human
    • SwissProt: Q96EB6 Human
    • Unigene: 369779 Human

    Images

    • Other - Human SIRT1 ELISA Kit (ab171573)
      Other - Human SIRT1 ELISA Kit (ab171573)

      SimpleStep ELISA technology allows the formation of the antibody-antigen complex in one single step, reducing assay time to 90 minutes. Add samples or standards and antibody mix to wells all at once, incubate, wash, and add your final substrate. See protocol for a detailed step-by-step guide.

       

    • Example SIRT1 standard curve
      Example SIRT1 standard curve

      Example SIRT1 standard curve. Background-subtracted data values (mean +/- SD) are graphed.

    • Titration of HeLa extract within the working range of the assay
      Titration of HeLa extract within the working range of the assay

      Titration of HeLa extract within the working range of the assay. Background subtracted data from duplicate measurements are plotted.

    • Comparison of SIRT1 expression in different cell lines
      Comparison of SIRT1 expression in different cell lines

      Comparison of SIRT1 expression in different cell lines. Background subtracted data from duplicate measurements are plotted. Note the relative lower expression of SIRT1 in the A431 cell line.

    • Quantitation of SIRT1 expression in different cell lines
      Quantitation of SIRT1 expression in different cell lines

      Interpolated values of sirtuin1 are plotted for the indicated cell lines based on a lysate load of 125 µg/mL. Western blot using the detector sirtuin1 antibody on the same lysates quantified above.

    • Immunocytochemical staining.
      Immunocytochemical staining.

      Immunocytochemical staining of Human HDFn cells using the SIRT1 detector antibody in this kit (ab110304). The target protein locates mainly in the nucleus.

    Protocols

    • Protocol Booklet

    Click here to view the general protocols

    Datasheets and documents

    • SDS download

    • Datasheet download

      Download

    References (8)

    Publishing research using ab171573? Please let us know so that we can cite the reference in this datasheet.

    ab171573 has been referenced in 8 publications.

    • Xie M & Yang Y Decreased Expression of Sirt1 Contributes to Ocular Behçet's Disease Progression via Th17 and Th22 Response. Ophthalmic Res 64:554-560 (2021). PubMed: 33142293
    • Bai M  et al. SIRT1 relieves Necrotizing Enterocolitis through inactivation of Hypoxia-inducible factor (HIF)-1a. Cell Cycle 19:2018-2027 (2020). PubMed: 32657204
    • Bartoli-Leonard F  et al. Suppression of SIRT1 in Diabetic Conditions Induces Osteogenic Differentiation of Human Vascular Smooth Muscle Cells via RUNX2 Signalling. Sci Rep 9:878 (2019). PubMed: 30696833
    • Mohamed WA & Schaalan MF Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-?, SIRT-1, and TLR4 downstream signaling pathway. Diabetol Metab Syndr 10:89 (2018). PubMed: 30534206
    • Saini JS  et al. Nicotinamide Ameliorates Disease Phenotypes in a Human iPSC Model of Age-Related Macular Degeneration. Cell Stem Cell N/A:N/A (2017). Sandwich ELISA ; Human . PubMed: 28132833
    • Chao SC  et al. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci Rep 7:3180 (2017). PubMed: 28600541
    • Mölzer C  et al. Features of an altered AMPK metabolic pathway in Gilbert's Syndrome, and its role in metabolic health. Sci Rep 6:30051 (2016). Sandwich ELISA ; Human . PubMed: 27444220
    • Reen FJ  et al. Bile signalling promotes chronic respiratory infections and antibiotic tolerance. Sci Rep 6:29768 (2016). Sandwich ELISA ; Human . PubMed: 27432520

    Customer reviews and Q&As

    Show All Reviews Q&A
    Submit a review Submit a question

    1-2 of 2 Abreviews or Q&A

    Suitable for human serum

    Excellent Excellent 5/5 (Ease of Use)
    Abreviews
    Abreviews
    We used the sirt-1 elisa kit for quantification of sirt-1 levels in human serum. Samples were used as 1:2 dilutions in the PTR buffer provided (1 x conc.). After correcting for the dilution factor, sirt-1 concentrations obtained ranged between 1.5 and 15 ng/mL.
    The reviewer received a reward from Abcam’s Loyalty Program in thanks for submitting this Abreview and for helping the scientific community make better-informed decisions.

    Christine Moelzer

    Verified customer

    Submitted Dec 08 2015

    SIRT1 protein levels in differente cell lines

    Excellent Excellent 5/5 (Ease of Use)
    Abreviews
    Abreviews
    abreview image
    We used the kit to quantify SIRT1 levels in different cell lines (fig. B) and used the purified SIRT1 protein for normalization (fig. A) via standard curve. The assay was performed as described in the manual. BCA assay was performed to quantify protein concentrations.
    The reviewer received a reward from Abcam’s Loyalty Program in thanks for submitting this Abreview and for helping the scientific community make better-informed decisions.

    Mr. Christian Marx

    Verified customer

    Submitted Jan 13 2014

    Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"
    For licensing inquiries, please contact partnerships@abcam.com

    Get resources and offers direct to your inbox Sign up
    A-Z by research area
    • Cancer
    • Cardiovascular
    • Cell biology
    • Developmental biology
    • Epigenetics & Nuclear signaling
    • Immunology
    • Metabolism
    • Microbiology
    • Neuroscience
    • Signal transduction
    • Stem cells
    A-Z by product type
    • Primary antibodies
    • Secondary antibodies
    • Biochemicals
    • Isotype controls
    • Flow cytometry multi-color selector
    • Kits
    • Loading controls
    • Lysates
    • Peptides
    • Proteins
    • Slides
    • Tags and cell markers
    • Tools & Reagents
    Help & support
    • Support
    • Make an Inquiry
    • Protocols & troubleshooting
    • Placing an order
    • RabMAb products
    • Biochemical product FAQs
    • Training
    • Browse by Target
    Company
    • Corporate site
    • Investor relations
    • Company news
    • Careers
    • About us
    • Blog
    Events
    • Tradeshows
    • Conferences
    International websites
    • abcam.cn
    • abcam.co.jp

    Join with us

    • LinkedIn
    • facebook
    • Twitter
    • YouTube
    • Terms of sale
    • Website terms of use
    • Cookie policy
    • Privacy policy
    • Legal
    • Modern slavery statement
    © 1998-2023 Abcam plc. All rights reserved.