abcam

Product datasheet

Anti-alpha la Adrenergic Receptor/ADRA1A antibody [EPR9691(B)] ab137123

Recombinant RabMAb

★★★★★ 1 Abreviews 19 References 4 Images

Overview

Product name Anti-alpha 1a Adrenergic Receptor/ADRA1A antibody [EPR9691(B)]

DescriptionRabbit monoclonal [EPR9691(B)] to alpha 1a Adrenergic Receptor/ADRA1A

Host species Rabbit

Tested applications Suitable for: Flow Cyt (Intra), WB, ICC/IF

Species reactivity Reacts with: Human

Predicted to work with: Mouse, Rat

Immunogen Synthetic peptide within Human alpha 1a Adrenergic Receptor/ADRA1A aa 200-300. The exact

sequence is proprietary. Database link: **P35348**

Positive control PC-3, HepG2, and Raji cell lysates, HepG2 cells

General notes This product is a recombinant monoclonal antibody, which offers several advantages including:

- High batch-to-batch consistency and reproducibility

Improved sensitivity and specificityLong-term security of supplyAnimal-free production

For more information see here.

Our RabMAb[®] technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to **RabMAb**[®] **patents**.

Properties

Form Liquid

Storage instructions Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.

Storage buffer Preservative: 0.01% Sodium azide

Constituents: 40% Glycerol (glycerin, glycerine), 0.05% BSA

Purity Protein A purified

Clone number Monoclonal EPR9691(B)

1

Isotype IgG

Applications

The Abpromise guarantee

Our Abpromise guarantee covers the use of ab137123 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
Flow Cyt (Intra)		1/100 - 1/1000. ab172730 - Rabbit monoclonal lgG, is suitable for use as an isotype control with this antibody.
WB	**** (1)	1/1000 - 1/10000. Detects a band of approximately 52 kDa (predicted molecular weight: 60 kDa).
ICC/IF		1/250 - 1/500.

T	ā	rq	et

Function This alpha-adrenergic receptor mediates its action by association with G proteins that activate a

phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11)

proteins.

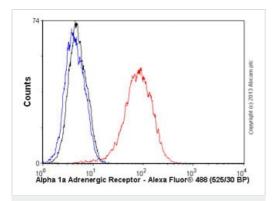
Tissue specificity Expressed in heart, brain, liver and prostate, but not in kidney, lung, adrenal, aorta and pituitary.

Within the prostate, expressed in the apex, base, periurethra and lateral lobe. Isoform 4 is the most abundant isoform expressed in the prostate with high levels also detected in liver and heart.

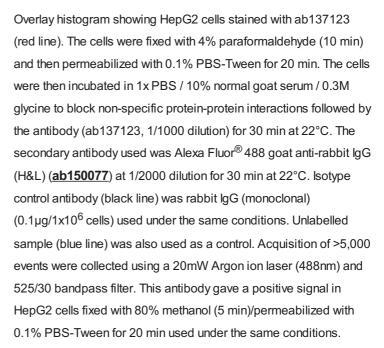
Sequence similarities Belongs to the G-protein coupled receptor 1 family. Adrenergic receptor subfamily. ADRA1A sub-

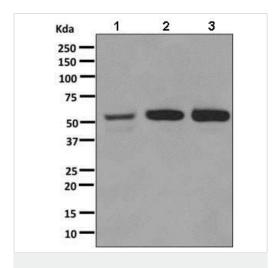
subfamily.

Post-translational


modifications

modifications


 $\label{lem:carboxyl-terminal} \textbf{Carboxyl-terminal Ser or Thr residues may be phosphorylated}.$


Cellular localization Cell membrane.

Images

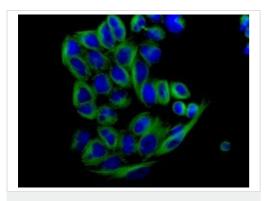
Flow Cytometry (Intracellular) - Anti-alpha 1a Adrenergic Receptor/ADRA1A antibody [EPR9691(B)] (ab137123)

Western blot - Anti-alpha 1a Adrenergic Receptor/ADRA1A antibody [EPR9691(B)] (ab137123)

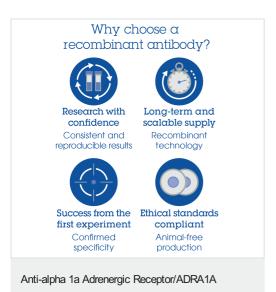
All lanes : Anti-alpha 1a Adrenergic Receptor/ADRA1A antibody [EPR9691(B)] (ab137123) at 1/1000 dilution

Lane 1 : PC-3 cell lysate

Lane 2 : HepG2 cell lysate


Lane 3 : Raji cell lysate

Lysates/proteins at 10 µg per lane.


Secondary

All lanes: HRP labelled goat anti-rabbit at 1/2000 dilution

Predicted band size: 60 kDa **Observed band size:** 52 kDa

Immunocytochemistry/ Immunofluorescence - Antialpha 1a Adrenergic Receptor/ADRA1A antibody [EPR9691(B)] (ab137123) Immunofluorescent analysis of HepG2 cells labelling alpha 1a Adrenergic Receptor/ADRA1A with ab137123 at 1/250 dilution.

antibody [EPR9691(B)] (ab137123)

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors						
		5					