Recombinant Anti-Amyloid Precursor Protein antibody [EPR5118-34] (ab126732)
Key features and details
- Produced recombinantly (animal-free) for high batch-to-batch consistency and long term security of supply
- Rabbit monoclonal [EPR5118-34] to Amyloid Precursor Protein
- Suitable for: Flow Cyt (Intra), WB, IHC-P
- Knockout validated
- Reacts with: Mouse, Rat, Human
Related conjugates and formulations
Overview
-
Product name
Anti-Amyloid Precursor Protein antibody [EPR5118-34]
See all Amyloid Precursor Protein primary antibodies -
Description
Rabbit monoclonal [EPR5118-34] to Amyloid Precursor Protein -
Host species
Rabbit -
Tested applications
Suitable for: Flow Cyt (Intra), WB, IHC-Pmore details
Unsuitable for: IP -
Species reactivity
Reacts with: Mouse, Rat, Human -
Immunogen
Synthetic peptide within Human Amyloid Precursor Protein aa 50-150 (extracellular). The exact sequence is proprietary.
Database link: P05067 -
Positive control
- SH-SY5Y, 293T, HeLa, HepG2, U-87 MG, Neuro 2a, and C6 cell lysates; Human fetal brain tissue.
-
General notes
This product is a recombinant monoclonal antibody, which offers several advantages including:
- - High batch-to-batch consistency and reproducibility
- - Improved sensitivity and specificity
- - Long-term security of supply
- - Animal-free production
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
Properties
-
Form
Liquid -
Storage instructions
Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C. Stable for 12 months at -20°C. -
Storage buffer
pH: 7.20
Preservative: 0.01% Sodium azide
Constituents: 9% PBS, 40% Glycerol (glycerin, glycerine), 0.05% BSA, 50% Tissue culture supernatant -
Concentration information loading...
-
Purity
Protein A purified -
Clonality
Monoclonal -
Clone number
EPR5118-34 -
Isotype
IgG -
Research areas
Associated products
-
Alternative Versions
-
Compatible Secondaries
-
Isotype control
-
Recombinant Protein
Applications
The Abpromise guarantee
Our Abpromise guarantee covers the use of ab126732 in the following tested applications.
The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
Application | Abreviews | Notes |
---|---|---|
Flow Cyt (Intra) |
1/10 - 1/100.
ab172730 - Rabbit monoclonal IgG, is suitable for use as an isotype control with this antibody. |
|
WB |
1/1000 - 1/10000. Detects a band of approximately 100-120 kDa (predicted molecular weight: 86 kDa).
|
|
IHC-P |
1/100 - 1/250. Perform heat mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol.
|
Notes |
---|
Flow Cyt (Intra)
1/10 - 1/100. ab172730 - Rabbit monoclonal IgG, is suitable for use as an isotype control with this antibody. |
WB
1/1000 - 1/10000. Detects a band of approximately 100-120 kDa (predicted molecular weight: 86 kDa). |
IHC-P
1/100 - 1/250. Perform heat mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol. |
Target
-
Function
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.
Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.
Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.
The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.
N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6). -
Tissue specificity
Expressed in all fetal tissues examined with highest levels in brain, kidney, heart and spleen. Weak expression in liver. In adult brain, highest expression found in the frontal lobe of the cortex and in the anterior perisylvian cortex-opercular gyri. Moderate expression in the cerebellar cortex, the posterior perisylvian cortex-opercular gyri and the temporal associated cortex. Weak expression found in the striate, extra-striate and motor cortices. Expressed in cerebrospinal fluid, and plasma. Isoform APP695 is the predominant form in neuronal tissue, isoform APP751 and isoform APP770 are widely expressed in non-neuronal cells. Isoform APP751 is the most abundant form in T-lymphocytes. Appican is expressed in astrocytes. -
Involvement in disease
Alzheimer disease 1
Cerebral amyloid angiopathy, APP-related -
Sequence similarities
Belongs to the APP family.
Contains 1 BPTI/Kunitz inhibitor domain. -
Domain
The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.
The NPXY sequence motif found in many tyrosine-phosphorylated proteins is required for the specific binding of the PID domain. However, additional amino acids either N- or C-terminal to the NPXY motif are often required for complete interaction. The PID domain-containing proteins which bind APP require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue. The NPXY site is also involved in clathrin-mediated endocytosis. -
Post-translational
modificationsProteolytically processed under normal cellular conditions. Cleavage either by alpha-secretase, beta-secretase or theta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, and the retention of corresponding membrane-anchored C-terminal fragments, C80, C83 and C99. Subsequent processing of C80 and C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is non-amyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the cytotoxic C-terminal fragments, gamma-CTF(50), gamma-CTF(57) and gamma-CTF(59). Many other minor beta-amyloid peptides, beta-amyloid 1-X peptides, are found in cerebral spinal fluid (CSF) including the beta-amyloid X-15 peptides, produced from the cleavage by alpha-secretase and all terminating at Gln-686.
Proteolytically cleaved by caspases during neuronal apoptosis. Cleavage at Asp-739 by either caspase-6, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased production of beta-amyloid peptides.
N- and O-glycosylated. O-glycosylation on Ser and Thr residues with core 1 or possibly core 8 glycans. Partial tyrosine glycosylation (Tyr-681) is found on some minor, short beta-amyloid peptides (beta-amyloid 1-15, 1-16, 1-17, 1-18, 1-19 and 1-20) but not found on beta-amyloid 38, beta-amyloid 40 nor on beta-amyloid 42. Modification on a tyrosine is unusual and is more prevelant in AD patients. Glycans had Neu5AcHex(Neu5Ac)HexNAc-O-Tyr, Neu5AcNeu5AcHex(Neu5Ac)HexNAc-O-Tyr and O-AcNeu5AcNeu5AcHex(Neu5Ac)HexNAc-O-Tyr structures, where O-Ac is O-acetylation of Neu5Ac. Neu5AcNeu5Ac is most likely Neu5Ac 2,8Neu5Ac linked. O-glycosylations in the vicinity of the cleavage sites may influence the proteolytic processing. Appicans are L-APP isoforms with O-linked chondroitin sulfate.
Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific. Phosphorylation can affect APP processing, neuronal differentiation and interaction with other proteins. Phosphorylated on Thr-743 in neuronal cells by Cdc5 kinase and Mapk10, in dividing cells by Cdc2 kinase in a cell-cycle dependent manner with maximal levels at the G2/M phase and, in vitro, by GSK-3-beta. The Thr-743 phosphorylated form causes a conformational change which reduces binding of Fe65 family members. Phosphorylation on Tyr-757 is required for SHC binding. Phosphorylated in the extracellular domain by casein kinases on both soluble and membrane-bound APP. This phosphorylation is inhibited by heparin.
Extracellular binding and reduction of copper, results in a corresponding oxidation of Cys-144 and Cys-158, and the formation of a disulfide bond. In vitro, the APP-Cu(+) complex in the presence of hydrogen peroxide results in an increased production of beta-amyloid-containing peptides.
Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP).
Beta-amyloid peptides are degraded by IDE. -
Cellular localization
Membrane. Membrane, clathrin-coated pit. Cell surface protein that rapidly becomes internalized via clathrin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alpha-secretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. Gamma-CTF(59) peptide is located to both the cytoplasm and nuclei of neurons. It can be translocated to the nucleus through association with APBB1 (Fe65). Beta-APP42 associates with FRPL1 at the cell surface and the complex is then rapidly internalized. APP sorts to the basolateral surface in epithelial cells. During neuronal differentiation, the Thr-743 phosphorylated form is located mainly in growth cones, moderately in neurites and sparingly in the cell body. Casein kinase phosphorylation can occur either at the cell surface or within a post-Golgi compartment. Associates with GPC1 in perinuclear compartments. Colocalizes with SORL1 in a vesicular pattern in cytoplasm and perinuclear regions. - Information by UniProt
-
Database links
- Entrez Gene: 351 Human
- Entrez Gene: 11820 Mouse
- Entrez Gene: 54226 Rat
- Omim: 104760 Human
- SwissProt: P05067 Human
- SwissProt: P12023 Mouse
- SwissProt: P08592 Rat
- Unigene: 434980 Human
see all -
Alternative names
- A4 amyloid protein antibody
- A4_HUMAN antibody
- AAA antibody
see all
Images
-
Lane 1: Wild type HAP1 whole cell lysate (20 µg)
Lane 2: APP knockout HAP1 whole cell lysate (20 µg)
Lane 3: HepG2 whole cell lysate (20 µg)
Lane 4: HeLa whole cell lysate (20 µg)Lanes 1 - 4: Merged signal (red and green). Green - ab126732 observed at 110 kDa. Red - loading control, ab9484, observed at 37 kDa.
ab126732 was shown to specifically react with APP when APP knockout samples were used. Wild-type and APP knockout samples were subjected to SDS-PAGE. Ab126732 and ab9484 (Mouse anti GAPDH loading control) were incubated overnight at 4°C at 1000 dilution and 1/10000 dilution respectively. Blots were developed with Goat anti-Rabbit IgG H&L (IRDye® 800CW) preabsorbed ab216773 and Goat anti-Mouse IgG H&L (IRDye® 680RD) preabsorbed ab216776 secondary antibodies at 1/10000 dilution for 1 hour at room temperature before imaging.
-
All lanes : Anti-Amyloid Precursor Protein antibody [EPR5118-34] (ab126732) at 1/1000 dilution
Lane 1 : SH-SY5Y cell lysate
Lane 2 : 293T cell lysate
Lane 3 : U-87 MG cell lysate
Lane 4 : Neuro 2a cell lysate
Lane 5 : C6 cell lysate
Lysates/proteins at 10 µg per lane.
Secondary
All lanes : HRP labelled goat anti-rabbit at 1/2000 dilution
Predicted band size: 86 kDa -
Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-Amyloid Precursor Protein antibody [EPR5118-34] (ab126732)
ab126732, at a dilution of 1/100, staining Amyloid Precursor Protein in paraffin-embedded Human fetal brain tissue by Immunohistochemistry.
Perform heat mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol.
-
Overlay histogram showing A431 cells stained with ab126732 (red line). The cells were fixed with 4% paraformaldehyde (10 min) and incubated in 1x PBS / 10% normal goat serum / 0.3M glycine to block non-specific protein-protein interactions. The cells were then incubated with the antibody (ab126732, 1/100 dilution) for 30 min at 22°C. The secondary antibody used was Alexa Fluor® 488 goat anti-rabbit IgG (H&L) (ab150077) at 1/2000 dilution for 30 min at 22°C. Isotype control antibody (black line) was rabbit IgG (monoclonal) (1µg/1x106 cells) used under the same conditions. Unlabelled sample (blue line) was also used as a control. Acquisition of >5,000 events were collected using a 20mW Argon ion laser (488nm) and 525/30 bandpass filter.
Protocols
Datasheets and documents
-
SDS download
-
Datasheet download
References (6)
ab126732 has been referenced in 6 publications.
- Wang T et al. Regulation of Th17/Treg Balance by 27-Hydroxycholesterol and 24S-Hydroxycholesterol Correlates with Learning and Memory Ability in Mice. Int J Mol Sci 23:N/A (2022). PubMed: 35457188
- Chocron ES et al. Genetic and pharmacologic proteasome augmentation ameliorates Alzheimer's-like pathology in mouse and fly APP overexpression models. Sci Adv 8:eabk2252 (2022). PubMed: 35675410
- Unsicker C et al. SHANK2 mutations impair apoptosis, proliferation and neurite outgrowth during early neuronal differentiation in SH-SY5Y cells. Sci Rep 11:2128 (2021). PubMed: 33483523
- Shen Y et al. Activation of Mitochondrial Unfolded Protein Response in SHSY5Y Expressing APP Cells and APP/PS1 Mice. Front Cell Neurosci 13:568 (2019). PubMed: 31969805
- Mendsaikhan A et al. Differences in Gene Expression Profiles and Phenotypes of Differentiated SH-SY5Y Neurons Stably Overexpressing Mitochondrial Ferritin. Front Mol Neurosci 11:470 (2018). PubMed: 30670947
- Chang JL et al. Targeting Amyloid-ß Precursor Protein, APP, Splicing with Antisense Oligonucleotides Reduces Toxic Amyloid-ß Production. Mol Ther 26:1539-1551 (2018). PubMed: 29628304