Recombinant Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)] (ab206297)
Key features and details
- Produced recombinantly (animal-free) for high batch-to-batch consistency and long term security of supply
- Rabbit monoclonal [EPR7074(N)] to Amyloid Precursor Protein (phospho T743)
- Suitable for: WB, ICC/IF, Dot blot, IP
- Reacts with: Mouse, Human
Related conjugates and formulations
Overview
-
Product name
Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)]
See all Amyloid Precursor Protein primary antibodies -
Description
Rabbit monoclonal [EPR7074(N)] to Amyloid Precursor Protein (phospho T743) -
Host species
Rabbit -
Tested applications
Suitable for: WB, ICC/IF, Dot blot, IPmore details -
Species reactivity
Reacts with: Mouse, Human
Predicted to work with: Rat -
Immunogen
Synthetic peptide. This information is proprietary to Abcam and/or its suppliers.
-
Positive control
- WB: Human hippocampus lysate; HeLa treated with 40ng/ml nocodazole for 24 hours whole cell lysate; Mouse and rat brain lysates. ICC/IF: HeLa cells. IP: Mouse brain whole cell lysate.
-
General notes
The immunogen used for this product is within Human Amyloid Precursor Protein aa 750 to the C-terminus and therefore may detect gamma secretase fragments 50, 57 and 59 in addition to fragments C31, C80, C83 and C99. Cross-reactivity with these fragments has not been confirmed experimentally.
This product is a recombinant monoclonal antibody, which offers several advantages including:
- - High batch-to-batch consistency and reproducibility
- - Improved sensitivity and specificity
- - Long-term security of supply
- - Animal-free production
Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.
Properties
-
Form
Liquid -
Storage instructions
Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C long term. Avoid freeze / thaw cycle. -
Storage buffer
pH: 7.2
Preservative: 0.01% Sodium azide
Constituents: 59% PBS, 40% Glycerol (glycerin, glycerine), 0.05% BSA -
Concentration information loading...
-
Purity
Protein A purified -
Clonality
Monoclonal -
Clone number
EPR7074(N) -
Isotype
IgG -
Research areas
Associated products
-
Alternative Versions
-
Compatible Secondaries
-
Isotype control
-
Recombinant Protein
-
Related Products
Applications
The Abpromise guarantee
Our Abpromise guarantee covers the use of ab206297 in the following tested applications.
The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.
Application | Abreviews | Notes |
---|---|---|
WB |
1/1000. Detects a band of approximately 100-120 kDa (predicted molecular weight: 86 kDa).
|
|
ICC/IF |
1/100.
|
|
Dot blot |
1/1000.
|
|
IP |
1/50.
|
Notes |
---|
WB
1/1000. Detects a band of approximately 100-120 kDa (predicted molecular weight: 86 kDa). |
ICC/IF
1/100. |
Dot blot
1/1000. |
IP
1/50. |
Target
-
Function
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.
Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.
Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.
The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.
N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6). -
Tissue specificity
Expressed in all fetal tissues examined with highest levels in brain, kidney, heart and spleen. Weak expression in liver. In adult brain, highest expression found in the frontal lobe of the cortex and in the anterior perisylvian cortex-opercular gyri. Moderate expression in the cerebellar cortex, the posterior perisylvian cortex-opercular gyri and the temporal associated cortex. Weak expression found in the striate, extra-striate and motor cortices. Expressed in cerebrospinal fluid, and plasma. Isoform APP695 is the predominant form in neuronal tissue, isoform APP751 and isoform APP770 are widely expressed in non-neuronal cells. Isoform APP751 is the most abundant form in T-lymphocytes. Appican is expressed in astrocytes. -
Involvement in disease
Alzheimer disease 1
Cerebral amyloid angiopathy, APP-related -
Sequence similarities
Belongs to the APP family.
Contains 1 BPTI/Kunitz inhibitor domain. -
Domain
The basolateral sorting signal (BaSS) is required for sorting of membrane proteins to the basolateral surface of epithelial cells.
The NPXY sequence motif found in many tyrosine-phosphorylated proteins is required for the specific binding of the PID domain. However, additional amino acids either N- or C-terminal to the NPXY motif are often required for complete interaction. The PID domain-containing proteins which bind APP require the YENPTY motif for full interaction. These interactions are independent of phosphorylation on the terminal tyrosine residue. The NPXY site is also involved in clathrin-mediated endocytosis. -
Post-translational
modificationsProteolytically processed under normal cellular conditions. Cleavage either by alpha-secretase, beta-secretase or theta-secretase leads to generation and extracellular release of soluble APP peptides, S-APP-alpha and S-APP-beta, and the retention of corresponding membrane-anchored C-terminal fragments, C80, C83 and C99. Subsequent processing of C80 and C83 by gamma-secretase yields P3 peptides. This is the major secretory pathway and is non-amyloidogenic. Alternatively, presenilin/nicastrin-mediated gamma-secretase processing of C99 releases the amyloid beta proteins, amyloid-beta 40 (Abeta40) and amyloid-beta 42 (Abeta42), major components of amyloid plaques, and the cytotoxic C-terminal fragments, gamma-CTF(50), gamma-CTF(57) and gamma-CTF(59). Many other minor beta-amyloid peptides, beta-amyloid 1-X peptides, are found in cerebral spinal fluid (CSF) including the beta-amyloid X-15 peptides, produced from the cleavage by alpha-secretase and all terminating at Gln-686.
Proteolytically cleaved by caspases during neuronal apoptosis. Cleavage at Asp-739 by either caspase-6, -8 or -9 results in the production of the neurotoxic C31 peptide and the increased production of beta-amyloid peptides.
N- and O-glycosylated. O-glycosylation on Ser and Thr residues with core 1 or possibly core 8 glycans. Partial tyrosine glycosylation (Tyr-681) is found on some minor, short beta-amyloid peptides (beta-amyloid 1-15, 1-16, 1-17, 1-18, 1-19 and 1-20) but not found on beta-amyloid 38, beta-amyloid 40 nor on beta-amyloid 42. Modification on a tyrosine is unusual and is more prevelant in AD patients. Glycans had Neu5AcHex(Neu5Ac)HexNAc-O-Tyr, Neu5AcNeu5AcHex(Neu5Ac)HexNAc-O-Tyr and O-AcNeu5AcNeu5AcHex(Neu5Ac)HexNAc-O-Tyr structures, where O-Ac is O-acetylation of Neu5Ac. Neu5AcNeu5Ac is most likely Neu5Ac 2,8Neu5Ac linked. O-glycosylations in the vicinity of the cleavage sites may influence the proteolytic processing. Appicans are L-APP isoforms with O-linked chondroitin sulfate.
Phosphorylation in the C-terminal on tyrosine, threonine and serine residues is neuron-specific. Phosphorylation can affect APP processing, neuronal differentiation and interaction with other proteins. Phosphorylated on Thr-743 in neuronal cells by Cdc5 kinase and Mapk10, in dividing cells by Cdc2 kinase in a cell-cycle dependent manner with maximal levels at the G2/M phase and, in vitro, by GSK-3-beta. The Thr-743 phosphorylated form causes a conformational change which reduces binding of Fe65 family members. Phosphorylation on Tyr-757 is required for SHC binding. Phosphorylated in the extracellular domain by casein kinases on both soluble and membrane-bound APP. This phosphorylation is inhibited by heparin.
Extracellular binding and reduction of copper, results in a corresponding oxidation of Cys-144 and Cys-158, and the formation of a disulfide bond. In vitro, the APP-Cu(+) complex in the presence of hydrogen peroxide results in an increased production of beta-amyloid-containing peptides.
Trophic-factor deprivation triggers the cleavage of surface APP by beta-secretase to release sAPP-beta which is further cleaved to release an N-terminal fragment of APP (N-APP).
Beta-amyloid peptides are degraded by IDE. -
Cellular localization
Membrane. Membrane, clathrin-coated pit. Cell surface protein that rapidly becomes internalized via clathrin-coated pits. During maturation, the immature APP (N-glycosylated in the endoplasmic reticulum) moves to the Golgi complex where complete maturation occurs (O-glycosylated and sulfated). After alpha-secretase cleavage, soluble APP is released into the extracellular space and the C-terminal is internalized to endosomes and lysosomes. Some APP accumulates in secretory transport vesicles leaving the late Golgi compartment and returns to the cell surface. Gamma-CTF(59) peptide is located to both the cytoplasm and nuclei of neurons. It can be translocated to the nucleus through association with APBB1 (Fe65). Beta-APP42 associates with FRPL1 at the cell surface and the complex is then rapidly internalized. APP sorts to the basolateral surface in epithelial cells. During neuronal differentiation, the Thr-743 phosphorylated form is located mainly in growth cones, moderately in neurites and sparingly in the cell body. Casein kinase phosphorylation can occur either at the cell surface or within a post-Golgi compartment. Associates with GPC1 in perinuclear compartments. Colocalizes with SORL1 in a vesicular pattern in cytoplasm and perinuclear regions. - Information by UniProt
-
Database links
- Entrez Gene: 351 Human
- Entrez Gene: 11820 Mouse
- Entrez Gene: 54226 Rat
- Omim: 104760 Human
- SwissProt: P05067 Human
- SwissProt: P12023 Mouse
- SwissProt: P08592 Rat
- Unigene: 434980 Human
see all -
Alternative names
- A4 amyloid protein antibody
- A4_HUMAN antibody
- AAA antibody
see all
Images
-
All lanes : Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)] (ab206297) at 1/5000 dilution
Lane 1 : Human hippocampus lysate
Lane 2 : Human hippocampus treated with Lambda Phosphatase lysate
Lysates/proteins at 10 µg per lane.
Secondary
All lanes : Anti-Rabbit IgG (HRP), specific to the non-reduced form of IgG at 1/10000 dilution
Predicted band size: 86 kDa
Observed band size: 100-120 kDa why is the actual band size different from the predicted?
Exposure time: 3 minutesBlocking/Dilution buffer: 5% NFDM/TBST.
-
Dot blot analysis of Amyloid Precursor Protein (phospho T668) phospho peptide (Lane 1) and Amyloid Precursor Protein Non-phospho peptide (Lane 2) labeled using ab206297 at 1/1000 dilution, followed by Goat Anti-Rabbit IgG, (H+L), Peroxidase conjugated secondary antibody at 1/1000 dilution.
Blocking/Dilution buffer: 5% NFDM/TBST.
Exposure time: 3 minutes.
-
All lanes : Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)] (ab206297) at 1/5000 dilution
Lane 1 : Untreated HeLa (Human epithelial cells from cervix adenocarcinoma) whole cell lysate
Lane 2 : HeLa (Human epithelial cells from cervix adenocarcinoma) treated with 40ng/ml nocodazole for 24 hours whole cell lysate
Lysates/proteins at 10 µg per lane.
Secondary
All lanes : Anti-Rabbit IgG (HRP), specific to the non-reduced form of IgG at 1/10000 dilution
Predicted band size: 86 kDa
Observed band size: 100-120 kDa why is the actual band size different from the predicted?
Exposure time: 30 secondsBlocking/Dilution buffer: 5% NFDM/TBST.
-
All lanes : Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)] (ab206297) at 1/1000 dilution
All lanes : Mouse brain tissue lysate
Lysates/proteins at 10 µg per lane.
Secondary
All lanes : Goat Anti-Rabbit IgG H&L (HRP) (ab97051) at 1/100000 dilution
Predicted band size: 86 kDa
Observed band size: 100-120 kDa why is the actual band size different from the predicted?
Exposure time: 30 secondsBlocking/Dilution buffer: 5% NFDM/TBST.
-
Immunocytochemistry/ Immunofluorescence - Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)] (ab206297)
Immunofluorescent analysis of 4% paraformaldehyde-fixed, 0.1% Triton X-100 permeabilized HeLa (Human epithelial cells from cervix adenocarcinoma) cells labeling Amyloid Precursor Protein (phospho T668) with ab206297 at 1/100 dilution, followed by Goat anti-rabbit IgG (Alexa Fluor® 488) (ab150077) secondary antibody at 1/1000 dilution (green). Confocal image showing nuclear staining on HeLa cell line. The expression increased after treatment with nocodazole (0.04ug/ml) for 24 hours. The nuclear counterstain is DAPI (blue). Tubulin is detected with ab7291 (anti-Tubulin mouse mAb) at 1/1000 dilution and ab150120 (AlexaFluor®594 Goat anti-Mouse secondary) at 1/1000 dilution (red).
The negative controls are as follows:-
-ve control 1: ab206297 at 1/100 dilution followed by ab150120 (AlexaFluor®594 Goat anti-Mouse secondary) at 1/1000 dilution.
-ve control 2: ab7291 (anti-Tubulin mouse mAb) at 1/1000 dilution followed by ab150077 (Alexa Fluor®488 Goat Anti-Rabbit IgG H&L) at 1/1000 dilution.
-
Immunoprecipitation - Anti-Amyloid Precursor Protein (phospho T743) antibody [EPR7074(N)] (ab206297)
Amyloid Precursor Protein (phospho T668) was immunoprecipitated from 1mg of Mouse brain whole cell lysate with ab206297 at 1/50 dilution. Western blot was performed from the immunoprecipitate using ab206297 at 1/1000 dilution. VeriBlot for IP Detection Reagent (HRP) (ab131366), was used for detection at 1/10000 dilution.
Lane 1: Mouse brain whole cell lysate 10ug (Input). Lane 2: ab206297 IP in Mouse brain whole cell lysate. Lane 3: Rabbit monoclonal IgG (ab172730) instead of ab206297 in Mouse brain whole cell lysate.
Blocking and dilution buffer and concentration: 5% NFDM/TBST.
Exposure time: 10 seconds.
Protocols
Datasheets and documents
-
SDS download
-
Datasheet download
Certificate of Compliance
References (1)
ab206297 has been referenced in 1 publication.
- Kong F et al. Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-?B signaling in Alzheimer's disease. J Neuroinflammation 17:305 (2020). WB ; Mouse . PubMed: 33059746