abcam

Product datasheet

APC Anti-CBL (phospho Y700) antibody [CblY700-E1] ab278763

2 Images

Overview

Product name APC Anti-CBL (phospho Y700) antibody [CblY700-E1]

Description APC Rabbit monoclonal [CblY700-E1] to CBL (phospho Y700)

Host species Rabbit

Conjugation APC. Ex: 645nm, Em: 660nm

Tested applications Suitable for: Flow Cyt

Species reactivity Reacts with: Rat

Predicted to work with: Human

Immunogen Synthetic peptide within Human CBL (phospho Y700). The exact immunogen sequence used to

generate this antibody is proprietary information. If additional detail on the immunogen is needed to determine the suitability of the antibody for your needs, please **contact** our Scientific Support

team to discuss your requirements.

Database link: P22681

Run BLAST with
Run BLAST with

Positive control Flow cyt: C6 cells treated with pervanadate.

General notesThis product is a recombinant monoclonal antibody, which offers several advantages including:

- High batch-to-batch consistency and reproducibility

- Improved sensitivity and specificity

Long-term security of supplyAnimal-free production

For more information see here.

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C. Store In the Dark.

Storage buffer Preservative: 0.09% Sodium azide

Constituents: 99.71% PBS, 0.2% BSA

Purity Protein A/G purified

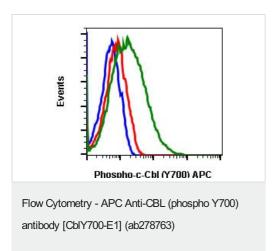
1

Clonality Monoclonal
Clone number CblY700-E1

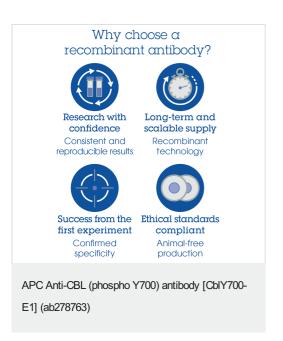
Isotype IgG

Light chain type kappa

Applications


The Abpromise guarantee Our Abpromise guarantee covers the use of ab278763 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.


Application	Abreviews	Notes
Flow Cyt		Use 5µl for 10 ⁶ cells.

Target	
Function	Participates in signal transduction in hematopoietic cells. Adapter protein that functions as a negative regulator of many signaling pathways that start from receptors at the cell surface. Acts as an E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, and then transfers it to substrates promoting their degradation by the proteasome. Recognizes activated receptor tyrosine kinases, including PDGFA, EGF and CSF1, and terminates signaling.
Pathway	Protein modification; protein ubiquitination.
Involvement in disease	Defects in CBL are the cause of Noonan syndrome-like disorder (NSL) [MIM:613563]. NSL is a syndrome characterized by a phenotype reminiscent of Noonan syndrome. Clinical features are highly variable, including facial dysmorphism, short neck, developmental delay, hyperextensible joints and thorax abnormalities with widely spaced nipples. The facial features consist of triangular face with hypertelorism, large low-set ears, ptosis, and flat nasal bridge. Some patients manifest cardiac defects.
Sequence similarities	Contains 1 Cbl-PTB (Cbl-type phosphotyrosine-binding) domain. Contains 1 RING-type zinc finger. Contains 1 UBA domain.
Domain	The RING-type zinc finger domain mediates binding to an E2 ubiquitin-conjugating enzyme. The N-terminus is composed of the phosphotyrosine binding (PTB) domain, a short linker region and the RING-type zinc finger. The PTB domain, which is also called TKB (tyrosine kinase binding) domain, is composed of three different subdomains: a four-helix bundle (4H), a calciumbinding EF hand and a divergent SH2 domain.
Post-translational modifications	Phosphorylated on tyrosine residues by EGFR, SYK, FYN and ZAP70 (By similarity). Phosphorylated on tyrosine residues by INSR.
Cellular localization	Cytoplasm.

Images

Flow cytometric analysis of C6 cells cell only only negative control (blue) or treated with imatinib (red) or with pervanadate (green) using ab278763.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				