abcam

Product datasheet

Anti-C3 antibody [12E2] ab17456

2 References

Overview	
Product name	Anti-C3 antibody [12E2]
Description	Mouse monoclonal [12E2] to C3
Host species	Mouse
Tested applications	Suitable for: IHC, ELISA, Flow Cyt
Species reactivity	Reacts with: Rat
Immunogen	Full length native protein (purified). This information is proprietary to Abcam and/or its suppliers.
General notes	The Life Science industry has been in the grips of a reproducibility crisis for a number of years. Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets your needs before purchasing.
	If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be found below, along with publications, customer reviews and Q&As

Properties	
Form	Liquid
Storage instructions	Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.
Storage buffer	pH: 7.40 Constituents: 0.0268% PBS, 2.9% Sodium chloride
Purity	Protein G purified
Clonality	Monoclonal
Clone number	12E2
Myeloma	x63-Ag8.653
Isotype	lgG1
Light chain type	kappa

Applications

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

The Abpromise guarantee

Application	Abreviews	Notes
IHC		Use at an assay dependent concentration.
ELISA		Use at an assay dependent concentration.
Flow Cyt		Use at an assay dependent concentration. PubMed: 22104107 <u>ab170190</u> - Mouse monoclonal lgG1, is suitable for use as an isotype control with this antibody.

 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates. Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of loc inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes. Fissue specificity Plasma. Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rai defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration ty 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retiin pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome, atypical form have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic. Intervices in the complement cascade system. Other genes may play a role in modifying the phenotype. Sequence similarities Contains 1	Function	C3 plays a central role in the activation of the complement system. Its processing by C3
immune aggregates. Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of loc inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes. Fissue specificity Plasma. Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rai defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vascultic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration by 9 (ARND9) [MIM:611378]. ARND is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retim pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome. Atypical forms of enderstoe in groups are allowed diarthea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Cortains 1 NTR domain. Cost was posibly by factor 1 on C3		convertase is the central reaction in both classical and alternative complement pathways. After
Derived from proteolytic degradation of complement C3, C3a anaphylatoxin is a mediator of loc inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes.Tissue specificityPlasma.nvolvement in diseaseDefects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rai defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration ty 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the rettin pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic uremic syndrome of arypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modifications <td></td> <td></td>		
inflammatory process. It induces the contraction of smooth muscle, increases vascular permeability and causes histamine release from mast cells and basophilic leukocytes. Tissue specificity Plasma. nvolvement in disease Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rai defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration by 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the rettip pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to amenid, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome in modifying the phenotype. Gequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Post-translational modifications C3f which is released. Then iC3b is slowly cleaved (possibly by factor l) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f.		
permeability and causes histamine release from mast cells and basophilic leukocytes.Tissue specificityPlasma.nvolvement in diseaseDefects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rai defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration by 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the reti- pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolits and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Cost is rapidly split in two positions by factor 1 and a cofactor to form iC3b (inactivated C3b) and C3b is rapidly spl		
nvolvement in diseaseDefects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rai defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration by 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retti pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atpical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic uremic syndrome it is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cle		
defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration by 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retii pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarthea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulated factors in the complement cascade system. Other genes may play a role in modifying the phenotype. Contains 1 anaphylatoxin-like dom	lissue specificity	Plasma.
infections because of ineffective opsonization of pathogens. Some patients may also develop autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration by 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retii pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarthea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulato factors in the complement cascade system. Other genes may play a role in modifying the phenotype. Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Post-translational modifications C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (bate chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce ot fragments such as C3d or C3g.	nvolvement in disease	Defects in C3 are the cause of complement component 3 deficiency (C3D) [MIM:120700]. A rar
autoimmune disorders, such as arthralgia and vasculitic rashes, lupus-like syndrome and membranoproliferative glomerulonephritis. Genetic variation in C3 is associated with susceptibility to age-related macular degeneration ty 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause a irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the return pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic and itarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce ot fragments such as C3d or C3g.		defect of the complement classical pathway. Patients develop recurrent, severe, pyogenic
membranoproliferative glomerulonephritis.Genetic variation in C3 is associated with susceptibility to age-related macular degeneration ty 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the return pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent 		infections because of ineffective opsonization of pathogens. Some patients may also develop
 9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retuin pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic aremia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome cause of actors in the complement cascade system. Other genes may play a role in modifying the phenotype. Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Cost-translational modifications C36 is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g. 		
irreversible vision loss in the developed world. In most patients, the disease is manifest as ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retui pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulato factors in the complement cascade system. Other genes may play a role in modifying the phenotype. Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Contains 1 NTR domain. Cost is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		Genetic variation in C3 is associated with susceptibility to age-related macular degeneration type
ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the return pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulated factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational nodificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		9 (ARMD9) [MIM:611378]. ARMD is a multifactorial eye disease and the most common cause of
pigment epithelium and within an elastin-containing structure known as Bruch membrane. Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		irreversible vision loss in the developed world. In most patients, the disease is manifest as
Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS [MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulated factors in the complement cascade system. Other genes may play a role in modifying the phenotype. Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Cost-translational modifications C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		ophthalmoscopically visible yellowish accumulations of protein and lipid that lie beneath the retir
[MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulated factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		pigment epithelium and within an elastin-containing structure known as Bruch membrane.
 characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulated factors in the complement cascade system. Other genes may play a role in modifying the phenotype. Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Cost-translational C3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g. 		Defects in C3 are a cause of susceptibility to hemolytic uremic syndrome atypical type 5 (AHUS
absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulated 		[MIM:612925]. An atypical form of hemolytic uremic syndrome. It is a complex genetic disease
syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		characterized by microangiopathic hemolytic anemia, thrombocytopenia, renal failure and
progression to end-stage renal disease. Note=Susceptibility to the development of atypical hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		absence of episodes of enterocolitis and diarrhea. In contrast to typical hemolytic uremic
hemolytic uremic syndrome can be conferred by mutations in various components of or regulate factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		syndrome, atypical forms have a poorer prognosis, with higher death rates and frequent
factors in the complement cascade system. Other genes may play a role in modifying the phenotype.Sequence similaritiesContains 1 anaphylatoxin-like domain. Contains 1 NTR domain.Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		progression to end-stage renal disease. Note=Susceptibility to the development of atypical
Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Post-translational C3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and modifications C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		hemolytic uremic syndrome can be conferred by mutations in various components of or regulato
Sequence similarities Contains 1 anaphylatoxin-like domain. Contains 1 NTR domain. Contains 1 NTR domain. Post-translational C3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and nodifications C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		factors in the complement cascade system. Other genes may play a role in modifying the
Post-translational modificationsC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		phenotype.
Post-translationalC3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) andmodificationsC3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.	Sequence similarities	Contains 1 anaphylatoxin-like domain.
modificationsC3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.		Contains 1 NTR domain.
alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth fragments such as C3d or C3g.	Post-translational	C3b is rapidly split in two positions by factor I and a cofactor to form iC3b (inactivated C3b) and
fragments such as C3d or C3g.	modifications	C3f which is released. Then iC3b is slowly cleaved (possibly by factor I) to form C3c (beta chair
		alpha' chain fragment 1 + alpha' chain fragment 2), C3dg and C3f. Other proteases produce oth
Phosphorylation sites are present in the extracelllular medium.		fragments such as C3d or C3g.
		Phosphorylation sites are present in the extracelllular medium.
2		

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit <u>https://www.abcam.com/abpromise</u> or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors