abcam

Product datasheet

Anti-groEL antibody ab90522

**** 2 Abreviews 15 References 1 Image

Overview

Product name Anti-groEL antibody

Description Rabbit polyclonal to groEL

Host species Rabbit

Tested applications Suitable for: WB

Species reactivity Reacts with: Escherichia coli

Immunogen Full length protein corresponding to Escherichia coli groEL. Strain K12

Database link: P0A6F5

Positive control WB: Recombinant groEL protein; E.coli cell lysate.

General notesThe Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or

contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid repeated freeze / thaw cycles.

Storage buffer Preservative: 0.09% Sodium azide

Constituents: PBS, 50% Glycerol (glycerin, glycerine)

Purity Protein A purified

Clonality Polyclonal

Isotype IgG

Applications

The Abpromise guarantee Our Abpromise guarantee covers the use of ab90522 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

1

Application	Abreviews	Notes
WB	★★★★★(2)	1/1000. Predicted molecular weight: 57 kDa.

Target

Relevance The bacterial chaperonin groEL is a double toroidal assembly, which together with the action of

the ring-shaped oligomeric cochaperonin, GroES, facilitates protein folding in an ATP dependent

manner.

Cellular localization Cytoplasmic

Images

All lanes: Anti-groEL antibody (ab90522) at 1/1000 dilution

Lane 1 : groEL recombinant protein

Lane 2: Human recombinant HSP60

Lane 3: Heat Shocked HeLa (human epithelial cell line from cervix

adenocarcinoma) cell lysate

Lane 4 : E.coli cell lysate

Predicted band size: 57 kDa

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- · We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				
		3			