abcam

Product datasheet

HRP Anti-GFP antibody ab6663

42 References 1 Image

Overview

Product name HRP Anti-GFP antibody

Description HRP Goat polyclonal to GFP

Host species Goat
Conjugation HRP

Tested applications Suitable for: WB

Species reactivity Reacts with: Species independent

Immunogen Recombinant full length protein corresponding to GFP aa 1-246.

Sequence:

MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATY

GKLTLKFICTT GKLPVPWPTL

VTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIF

FKDDGNYKTRA EVKFEGDTLV

 ${\tt NRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIK}$

VNFKIRHN IEDGSVQLAD

HYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVL

LEFVTAAGIT HGMDELYK

Database link: P42212

Run BLAST with
Run BLAST with

Positive control GFP

General notes Designed to detect GFP and its variants in ELISA (sandwich or capture), immunoblotting and

immunoprecipitation Peroxidase conjugated anti-GFP assayed by immunoblot shows a 42 kDa

band when reacted with GFP on a western blot.

The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

1

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C.

Storage buffer pH: 6.50

Preservative: 0.01% Gentamicin sulphate

Constituents: 0.42% Tripotassium orthophosphate, 0.87% Sodium chloride, 1% BSA

Do NOT add Sodium Azide!

Purity Affinity purified

Purification notesThis product was prepared from monospecific antiserum by immunoaffinity chromatography using

Green Fluorescent Protein (Aequorea victoria) coupled to agarose beads followed by solid

phase adsorption(s) to remove any unwanted reactivities.

Primary antibody notesDesigned to detect GFP and its variants in ELISA (sandwich or capture), immunoblotting and

immunoprecipitation Peroxidase conjugated anti-GFP assayed by immunoblot shows a 42 kDa

band when reacted with GFP on a western blot.

Clonality Polyclonal

Isotype IgG

Applications

The Abpromise guarantee

Our Abpromise guarantee covers the use of ab6663 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
WB		1/2000 - 1/5000.

Target

Relevance

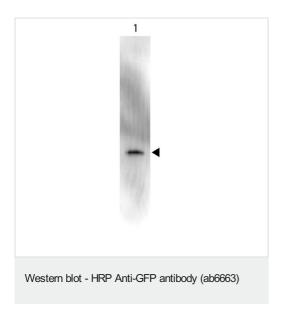
Function: Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca²⁺ -activated photoprotein aequorin.

Subunit structure: Monomer.

Tissue specificity: Photocytes.

Post-translational modification: Contains a chromophore consisting of modified amino acid residues. The chromophore is formed by autocatalytic backbone condensation between Ser-65 and Gly-67, and oxidation of Tyr-66 to didehydrotyrosine. Maturation of the chromophore requires nothing other than molecular oxygen.

Biotechnological use: Green fluorescent protein has been engineered to produce a vast number of variously colored mutants, fusion proteins, and biosensors. Fluorescent proteins and its mutated allelic forms, blue, cyan and yellow have become a useful and ubiquitous tool for making chimeric proteins, where they function as a fluorescent protein tag. Typically they tolerate N- and C-terminal fusion to a broad variety of proteins. They have been expressed in most known cell


types and are used as a noninvasive fluorescent marker in living cells and organisms. They enable a wide range of applications where they have functioned as a cell lineage tracer, reporter of gene expression, or as a measure of protein-protein interactions. Can also be used as a molecular thermometer, allowing accurate temperature measurements in fluids. The measurement process relies on the detection of the blinking of GFP using fluorescence correlation spectroscopy.

Sequence similarities: Belongs to the GFP family.

Biophysicochemical properties: Absorption: Abs(max)=395 nm

Exhibits a smaller absorbance peak at 470 nm. The fluorescence emission spectrum peaks at 509 nm with a shoulder at 540 nm.

Images

HRP Anti-GFP antibody (ab6663) + GFP

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- · We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				