# abcam

### Product datasheet

# Anti-KDM1/LSD1 antibody - Nuclear Marker ab17721



## \*\*\*\* 25 Abreviews 214 References 6 Images

Overview

Product name Anti-KDM1/LSD1 antibody - Nuclear Marker

**Description** Rabbit polyclonal to KDM1/LSD1 - Nuclear Marker

Host species Rabbit

Specificity Replenishment batches of our polyclonal antibody, ab17721 are tested in WB. Previous batches

were additionally validated in ICC/IF. This application is still expected to work and is covered by our Abpromise guarantee. You may also be interested in our alternative recombinant antibody,

ab129195.

Tested applications Suitable for: ICC/IF, WB

**Species reactivity** Reacts with: Mouse, Rat, Human

Predicted to work with: Pig ...

Immunogen Synthetic peptide conjugated to KLH derived from within residues 800 to the C-terminus of

Human LSD1. Read Abcam's proprietary immunogen policy (Peptide available as ab17763.)

Positive control ICC/IF: HeLa, 293T, c2c12 cells. WB: Jurkat, HCT 116, NIH/3T3, C2C12, Mouse skeletal muscle,

C6, HeLa.

**General notes**The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

**Properties** 

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C short term (1-2 weeks). Upon delivery aliquot. Store at -20°C or -

80°C. Avoid freeze / thaw cycle.

Storage buffer pH: 7.40

Preservative: 0.02% Sodium azide

1

#### Constituent: PBS

Batches of this product that have a concentration < 1mg/ml may have BSA added as a stabilising agent. If you would like information about the formulation of a specific lot, please contact our scientific support team who will be happy to help.

Purity Immunogen affinity purified

**Clonality** Polyclonal

**Isotype** IgG

#### **Applications**

#### The Abpromise guarantee

Our Abpromise quarantee covers the use of ab17721 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

| Application | Abreviews               | Notes                                                                                                         |
|-------------|-------------------------|---------------------------------------------------------------------------------------------------------------|
| ICC/IF      | <b>★★★★★</b> (4)        | Use a concentration of 1 µg/ml.                                                                               |
| WB          | <b>★★★★</b> <u>(12)</u> | Use a concentration of 1 µg/ml. Detects a band of approximately 105 kDa (predicted molecular weight: 93 kDa). |

#### **Target**

#### **Function**

Histone demethylase that demethylates both 'Lys-4' (H3K4me) and 'Lys-9' (H3K9me) of histone H3, thereby acting as a coactivator or a corepressor, depending on the context. Acts by oxidizing the substrate by FAD to generate the corresponding imine that is subsequently hydrolyzed. Acts as a corepressor by mediating demethylation of H3K4me, a specific tag for epigenetic transcriptional activation. Demethylates both mono- (H3K4me1) and di-methylated (H3K4me2) H3K4me. May play a role in the repression of neuronal genes. Alone, it is unable to demethylate H3K4me on nucleosomes and requires the presence of RCOR1/CoREST to achieve such activity. Also acts as a coactivator of androgen receptor (ANDR)-dependent transcription, by being recruited to ANDR target genes and mediating demethylation of H3K9me, a specific tag for epigenetic transcriptional repression. The presence of PRKCB in ANDR-containing complexes, which mediates phosphorylation of 'Thr-6' of histone H3 (H3T6ph), a specific tag that prevents demethylation H3K4me, prevents H3K4me demethylase activity of KDM1A. Demethylates dimethylated 'Lys-370' of p53/TP53 which prevents interaction of p53/TP53 with TP53BP1 and represses p53/TP53-mediated transcriptional activation. Demethylates and stabilizes the DNA methylase DNMT1. Required for gastrulation during embryogenesis.

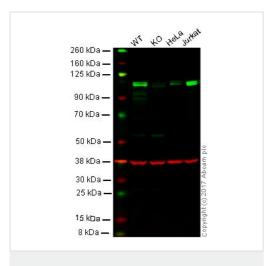
Tissue specificity

Ubiquitously expressed.

Sequence similarities

Belongs to the flavin monoamine oxidase family.

Contains 1 SWIRM domain.


**Domain** 

The SWIRM domain may act as an anchor site for a histone tail.

**Cellular localization** 

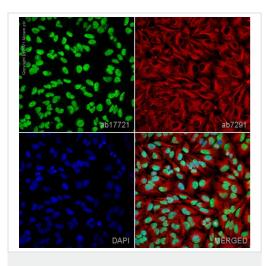
Nucleus.

#### **Images**



Western blot - Anti-KDM1/LSD1 antibody - Nuclear Marker (ab17721)

Lane 1: Wild type HAP1 whole cell lysate (20 µg)

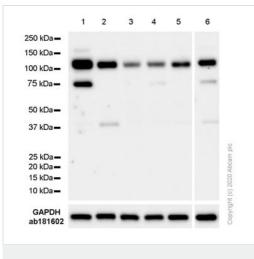

Lane 2: KDM1 / LSD1 knockout HAP1 whole cell lysate (20 µg)

Lane 3: HeLa whole cell lysate (20 µg)

Lane 4: Jurkat whole cell lysate (20 µg)

**Lanes 1 - 4:** Merged signal (red and green). Green - ab17721 observed at 110 kDa. Red - loading control, **ab8245**, observed at 37 kDa.

ab17721 was shown to specifically react with KDMI/LSD1 in wild-type HAP1 cells. No band was observed when KDMI/LSD1 knockout samples were examined.




Immunocytochemistry/ Immunofluorescence - Anti-KDM1/LSD1 antibody - Nuclear Marker (ab17721)

ab17721 staining KDM1 / LSD1 in HeLa cells. The cells were fixed with 100% methanol (5 min), permeabilized with 0.1% PBS-Triton X-100 for 5 minutes and then blocked with 1% BSA/10% normal goat serum/0.3M glycine in 0.1% PBS-Tween for 1h. The cells were then incubated overnight at 4°C with ab17721 at 1µg/ml and ab7291, Mouse monoclonal [DM1A] to alpha Tubulin - Loading Control. Cells were then incubated with ab150081, Goat polyclonal Secondary Antibody to Rabbit IgG - H&L (Alexa Fluor<sup>®</sup> 488), preadsorbed at 1/1000 dilution (shown in green) and ab150120, Goat polyclonal Secondary Antibody to Mouse IgG - H&L (Alexa Fluor<sup>®</sup> 594), pre-adsorbed at 1/1000 dilution (shown in pseudocolour red). Nuclear DNA was labelled with DAPI (shown in blue).

Also suitable in cells fixed with 4% paraformaldehyde (10 min).

Image was acquired with a high-content analyser (Operetta CLS, Perkin Elmer) and a maximum intensity projection of confocal sections is shown.



Western blot - Anti-KDM1/LSD1 antibody - Nuclear Marker (ab17721)

#### All lanes:

Lane 1 : Jurkat (Human T cell leukemia T lymphocyte) whole cell lysates at 20 µg

Lane 2: HCT 116 (Human colorectal carcinoma epithelial cell) whole cell lysates at 20 µg

**Lane 3 :** NIH/3T3 (Mouse embryonic fibroblast) whole cell lysates at  $20 \ \mu g$ 

Lane 4: C2C12 (Mouse myoblasts myoblast) whole cell lysates

Lane 5: Mouse skeletal muscle lysates at 20 µg

Lane 6 : C6 (Rat glial tumor glial cell) whole cell lysates at 20  $\mu g$ 

#### **Secondary**

**All lanes :** Goat Anti-Rabbit lgG, (H+L), Peroxidase conjugated (ab97051) at 1/20000 dilution

Predicted band size: 93 kDa

Exposure time: 50 seconds

Observed MW: 110kd

Blocking Buffer & Diluting buffer concentration: 5% NFDM/TBST

**All lanes :** Anti-KDM1/LSD1 antibody - Nuclear Marker (ab17721) at 1 µg/ml

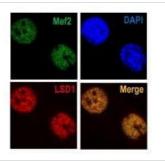
Lane 1 : HeLa (Human epithelial carcinoma cell line) Whole Cell Lysate

Lane 2: Jurkat whole cell lysate (ab7899)

Lane 3: NIH/3T3 whole cell lysate (ab7179)

Lysates/proteins at 20 µg per lane.

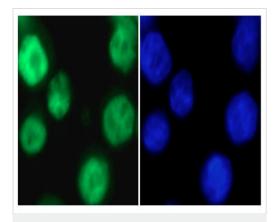
#### Secondary


**All lanes :** Goat polyclonal to Rabbit lgG H&L (HRP) Pre-Adsorbed at 1/10000 dilution

Performed under reducing conditions.

Predicted band size: 93 kDa




Western blot - Anti-KDM1/LSD1 antibody - Nuclear Marker and ChIP Grade (ab17721)



Immunocytochemistry/ Immunofluorescence - Anti-KDM1/LSD1 antibody - Nuclear Marker and ChIP Grade (ab17721)

Image courtesy of anonymous abreviewer

ab17721 staining LSD1 in the mouse c2c12 cell line by ICC/IF (Immunocytochemistry/immunofluorescence). Cells were fixed with paraformaldehyde, permeabilized with 0.5% Triton X-100 and blocked with 2% BSA for 1 hour at 25°C. Samples were incubated with primary antibody (1/200) for 1 hour at 25°C. A diluted (1/2000) Alexa Fluor® 568-conjugated Goat anti-rabbit IgG polyclonal was used as the secondary antibody.



Human 293T cells fixed in 4% paraformaldehyde were immunostained with ab17721 (1/200) for LSD1 and detected using FITC labelled anti-rabbit (Green). Nuclear DNA is stained blue with DAPI.

Immunocytochemistry/ Immunofluorescence - Anti-KDM1/LSD1 antibody - Nuclear Marker and ChIP Grade (ab17721)

This image is courtesy of Katia Ancelin

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

#### Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit <a href="https://www.abcam.com/abpromise">https://www.abcam.com/abpromise</a> or contact our technical team.

#### Terms and conditions

| Guarantee only valid for products bought direct from Abcam or one of our authorized distributors |  |  |  |
|--------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |
|                                                                                                  |  |  |  |