abcam

Product datasheet

Anti-MFF antibody [EPR7360] ab129075

1 Abreviews 10 References 3 Images

Overview

Immunogen

Product name Anti-MFF antibody [EPR7360]

Description Rabbit monoclonal [EPR7360] to MFF

Host species Rabbit

Suitable for: WB **Tested applications**

Unsuitable for: IHC-P or IP

Species reactivity Reacts with: Human

Predicted to work with: Mouse, Rat

Synthetic peptide within Human MFF aa 250-350. The exact sequence is proprietary.

Positive control Fetal muscle and fetal heart lysates

General notes This product is a recombinant monoclonal antibody, which offers several advantages including:

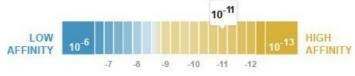
- High batch-to-batch consistency and reproducibility

- Improved sensitivity and specificity

- Long-term security of supply

- Animal-free production

For more information see here.


Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to **RabMAb**® **patents**.

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at -20°C. Stable for 12 months at -20°C.

Dissociation constant (K_D) $K_D = 6.10 \times 10^{-11} M$

Learn more about K_D

Storage buffer pH: 7.20

Preservative: 0.01% Sodium azide

Constituents: 9% PBS, 40% Glycerol (glycerin, glycerine), 0.05% BSA, 50% Tissue culture

supernatant

Purity Protein A purified

ClonalityMonoclonalClone numberEPR7360

Isotype IgG

Applications

The Abpromise guarantee

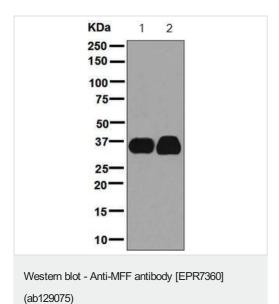
Our Abpromise guarantee covers the use of ab129075 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
WB		1/1000 - 1/10000. Detects a band of approximately 34 kDa (predicted molecular weight: 38 kDa).

Application notes Is unsuitable for IHC-P or IP.

Target


Function Plays a role in mitochondrial and peroxisomal fission.

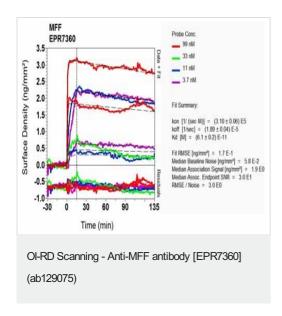
Tissue specificity Highly expressed in heart, kidney, liver, brain, muscle, and stomach.

Sequence similarities Belongs to the tango11 family.

Cellular localization Mitochondrion outer membrane.

Images

All lanes : Anti-MFF antibody [EPR7360] (ab129075) at 1/1000


dilution

Lane 1 : Fetal muscle lysates

Lane 2 : Fetal heart lysates

Lysates/proteins at 10 µg per lane.

Predicted band size: 38 kDa **Observed band size:** 34 kDa

Equilibrium disassociation constant (K_D)

Learn more about KD

Click here to learn more about K_D

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				