abcam

Product datasheet

Anti-PDGFR beta (phospho Y751) antibody ab51046

1 References 2 Images

Overview

Product name Anti-PDGFR beta (phospho Y751) antibody

Description Rabbit polyclonal to PDGFR beta (phospho Y751)

Host species Rabbit

Specificity Detects endogenous levels of PGDFR-ß only when phosphorylated at tyrosine 751.

Tested applications Suitable for: ELISA, IHC-P, WB

Species reactivity Reacts with: Human

Predicted to work with: Mouse, Rat

Immunogen Synthetic peptide corresponding to Human PDGFR beta aa 700-800 (phospho Y751).

Database link: P09619

Positive control WB:A431 cells treated with 0.05ng of PDGF IHC-P: Human brain tissue.

General notes

The Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at -20°C. Stable for 12 months at -20°C.

Storage buffer pH: 7.40

Preservative: 0.02% Sodium azide

Constituents: 50% Glycerol, 0.87% Sodium chloride, PBS

Without Mg+2 and Ca+2

Purity Immunogen affinity purified

Purification notes Purified from rabbit antiserum by affinity chromatography using epitope specific phosphopeptide.

The antibody against non phosphopeptide was removed by chromatography using non

phosphopeptide corresponding to the phosphorylation site.

1

Clonality Polyclonal

Isotype IgG

Applications

The Abpromise guarantee

Our **Abpromise guarantee** covers the use of ab51046 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
ELISA		Use at an assay dependent concentration.
IHC-P		Use at an assay dependent concentration.
WB		Use at an assay dependent concentration. Predicted molecular weight: 123 kDa.

Function

Receptor that binds specifically to PDGFB and PDGFD and has a tyrosine-protein kinase activity. Phosphorylates Tyr residues at the C-terminus of PTPN11 creating a binding site for the SH2 domain of GRB2.

Involvement in disease

Note=A chromosomal aberration involving PDGFRB is found in a form of chronic myelomonocytic leukemia (CMML). Translocation t(5;12)(q33;p13) with EVT6/TEL. It is characterized by abnormal clonal myeloid proliferation and by progression to acute myelogenous leukemia (AML). Note=A chromosomal aberration involving PDGFRB may be a cause of acute myelogenous leukemia. Translocation t(5;14)(q33;q32) with TRIP11. The fusion protein may be involved in clonal evolution of leukemia and eosinophilia.

Note=A chromosomal aberration involving PDGFRB may be a cause of juvenile myelomonocytic leukemia. Translocation t(5;17)(q33;p11.2) with SPECC1.

Defects in PDGFRB are a cause of myeloproliferative disorder chronic with eosinophilia (MPE) [MIM:131440]. A hematologic disorder characterized by malignant eosinophils proliferation. Note=A chromosomal aberration involving PDGFRB is found in many instances of myeloproliferative disorder chronic with eosinophilia. Translocation t(5;12) with ETV6 on

chromosome 12 creating an PDGFRB-ETV6 fusion protein.

Note=A chromosomal aberration involving PDGFRB may be the cause of a myeloproliferative disorder (MBD) associated with eosinophilia. Translocation t(1;5)(q23;q33) that forms a

PDE4DIP-PDGFRB fusion protein.

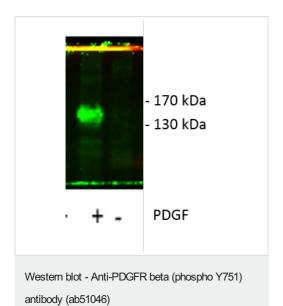
Sequence similarities

Belongs to the protein kinase superfamily. Tyr protein kinase family. CSF-1/PDGF receptor

subfamily.

Contains 5 lg-like C2-type (immunoglobulin-like) domains.

Contains 1 protein kinase domain.

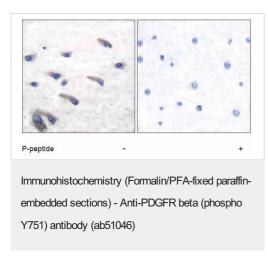

Post-translational modifications

Autophosphorylated. Dephosphorylated by PTPRJ at Tyr-751, Tyr-857, Tyr-1009 and Tyr-1021.

Cellular localization

Membrane.

I----



All lanes: Anti-PDGFR beta (phospho Y751) antibody (ab51046)

Lane 1: A431 cells treated with 0.05ng of PDGF

Lane 2: A431 cells untreated treated

Predicted band size: 123 kDa **Observed band size:** 130-170 kDa

Human brain tissue labelled with ab51046 at 1/50 dilution

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors							