abcam

Product datasheet

PE Anti-CD90 / Thyl antibody [5E10] ab95700

4 References 1 Image

Overview

Product name PE Anti-CD90 / Thy1 antibody [5E10]

Description PE Mouse monoclonal [5E10] to CD90 / Thy1

Host species Mouse

Conjugation PE. Ex: 488nm, Em: 575nm

Tested applications Suitable for: Flow Cyt

Species reactivity Reacts with: Human

Immunogen Tissue, cells or virus corresponding to Human CD90/Thy1. Human erythroleukemia (HEL) cells.

Positive control Human erythroleukemia (HEL) cells

General notesThe Life Science industry has been in the grips of a reproducibility crisis for a number of years.

Abcam is leading the way in addressing this with our range of recombinant monoclonal antibodies and knockout edited cell lines for gold-standard validation. Please check that this product meets

your needs before purchasing.

If you have any questions, special requirements or concerns, please send us an inquiry and/or contact our Support team ahead of purchase. Recommended alternatives for this product can be

found below, along with publications, customer reviews and Q&As

Properties

Form Liquid

Storage instructions Shipped at 4°C. Store at +4°C.

Storage buffer pH: 7.20

Preservative: 0.09% Sodium azide

Purity Protein G purified

Clonality Monoclonal

Clone number 5E10 lsotype lgG1

Light chain type kappa

Applications

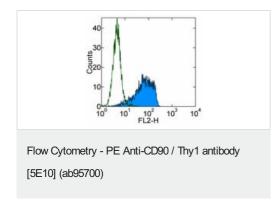
1

The Abpromise guarantee

Our **Abpromise guarantee** covers the use of ab95700 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Application	Abreviews	Notes
Flow Cyt		Use 5µl for 10 ⁶ cells. <u>ab91357</u> - Mouse monoclonal lgG1, is suitable for use as an isotype control with this antibody.


Target

Function May play a role in cell-cell or cell-ligand interactions during synaptogenesis and other events in the brain.

Sequence similarities Contains 1 lg-like V-type (immunoglobulin-like) domain.

Cellular localization Cell membrane.

Images

Flow cytometry staining of Human erythroleukemia (HEL) cells with Mouse IgG1 ? Isotype Control PE (open histogram) or ab95700 (filled histogram). Total viable cells were used for analysis.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- · Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

Guarantee only valid for products bought direct from Abcam or one of our authorized distributors				
		3		