Product name: Anti-SIRT1 antibody [E104] ab32441

Description: Rabbit monoclonal [E104] to SIRT1

Host species: Rabbit

Specificity: This antibody does not cross-react with other sirtuin family members. Expression levels of the target protein vary with sample type and some optimisation may be required. For western blotting, more concentrated lysates may be required when using tissues samples.

Tested applications: Suitable for: ICC/IF, Flow Cyt (Intra), WB, IP, IHC-P

Species reactivity: Reacts with: Human

Immunogen: Synthetic peptide within Human SIRT1 aa 700-800 (C terminal). The exact sequence is proprietary.

General notes: This product is a recombinant monoclonal antibody, which offers several advantages including:
- High batch-to-batch consistency and reproducibility
- Improved sensitivity and specificity
- Long-term security of supply
- Animal-free production

For more information see here.

Our RabMAb® technology is a patented hybridoma-based technology for making rabbit monoclonal antibodies. For details on our patents, please refer to RabMAb® patents.

Rat: We have preliminary internal testing data to indicate this antibody may not react with this species. Please contact us for more information.

Form: Liquid

Storage instructions: Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.

Storage buffer: pH: 7.20
Preservative: 0.01% Sodium azide
Constituents: 59% PBS, 40% Glycerol, 0.05% BSA

Purity
Protein A purified

Clonality
Monoclonal

Clone number
E104

Isotype
IgG

Applications

The Abpromise guarantee
Our Abpromise guarantee covers the use of ab32441 in the following tested applications. The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

<table>
<thead>
<tr>
<th>Application</th>
<th>Abreviews</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICC/IF</td>
<td>★★★★☆☆☆☆ (1)</td>
<td>1/150.</td>
</tr>
<tr>
<td>Flow Cyt (Intra)</td>
<td></td>
<td>1/200.</td>
</tr>
<tr>
<td>WB</td>
<td>★★★★★☆☆☆☆☆ (10)</td>
<td>1/20000. Detects a band of approximately 110 kDa (predicted molecular weight: 82 kDa). For unpurified, use 1/5000. Detects a band of approximately 110 kDa (110-121 kDa) which is likely to be due to post translational glycosylation. SIRT1 is known to bind to several other proteins, and the 121kDa band could also be due to the presence of one of these complexes.</td>
</tr>
<tr>
<td>IP</td>
<td></td>
<td>1/30.</td>
</tr>
<tr>
<td>IHC-P</td>
<td>★★★★★☆☆☆☆☆ (1)</td>
<td>1/150. Perform heat mediated antigen retrieval with citrate buffer pH 6 before commencing with IHC staining protocol.</td>
</tr>
</tbody>
</table>

Target

Function
NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metabolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+) / NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5’-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at ‘Lys-9’ (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates ‘Lys-266’ of SUV39H1, leading to its activation. Inhibits skeletal muscle
differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and ‘Lys-26’ of HIST1H1E. Deacetylates ‘Lys-16’ of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates ‘Lys-382’ of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and proteosomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at ‘Ser-62’. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF, Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at ‘Lys-434’ positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCO1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacetylation and activation of PPARC1A is required to activate fatty acid oxidation in skeletal muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and facilitating recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73
probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacetylates MECOM/EVI1. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes through

Isoform 2: Isoform 2 is shown to deacetylate 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isofrom-dependent auto-regulatory loop.

(Microbial infection) In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection.

SirtT1 75 kDa fragment: catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly.

Images

Western blot - Anti-SIRT1 antibody [E104] (ab32441)

All lanes: Anti-SIRT1 antibody [E104] (ab32441) at 1/20000 dilution

Lane 1: Wild-type HEK-293 cell lysate
Lane 2: SIRT1 CRISPR/Cas9 edited HEK-293 cell lysate
Lane 3: MDA-MB-231 cell lysate
Lane 4: HeLa cell lysate

Lysates/proteins at 20 µg per lane.

Performed under reducing conditions.

Predicted band size: 82 kDa
Observed band size: 110 kDa

Lanes 1 - 4: Merged signal (red and green). Green - ab32441 observed at 110 kDa. Red - loading control, ab8245 (Mouse anti-GAPDH antibody [6C5]) observed at 37kDa.

ab32441 was shown to react with SIRT1 in western blot. The band observed in the CRISPR/Cas9 edited lysate lane below 110kDa may represent truncated forms and cleaved fragments. This has not been investigated further. Membranes were blocked in 3% milk in TBS-T (0.1% Tween®) before incubation with ab32441 and ab8245 (Mouse anti-GAPDH antibody [6C5]) overnight at 4°C at a 1 in 20000 Dilution and a 1 in 20000 dilution respectively. Blots were incubated with Goat anti-Rabbit IgG H&L (IRDye® 800CW) preabsorbed (ab216773) and Goat anti-Mouse IgG H&L (IRDye® 680RD) preabsorbed (ab216776) secondary antibodies at 1 in 20000 dilution for 1 hour at room temperature before imaging.

5
Immunohistochemistry (Formalin/PFA-fixed paraffin-embedded sections) - Anti-SIRT1 antibody [E104] (ab32441)

IHC image of SIRT1 staining in a section of formalin-fixed paraffin-embedded normal human colon* performed on a Leica BOND™ system using the standard protocol F. The section was pre-treated using heat mediated antigen retrieval with sodium citrate buffer (pH6, epitope retrieval solution 1) for 20mins. The section was then incubated with ab32441, 1/250 dilution, for 15 mins at room temperature and detected using an HRP conjugated compact polymer system. DAB was used as the chromogen. The section was then counterstained with haematoxylin and mounted with DPX.

For other IHC staining systems (automated and non-automated) customers should optimize variable parameters such as antigen retrieval conditions, primary antibody concentration and antibody incubation times.

*Tissue obtained from the Human Research Tissue Bank, supported by the NIHR Cambridge Biomedical Research Centre

Immunofluorescence staining of SH-SY5Y cells with purified ab32441 at a working dilution of 1 in 150, counter-stained with DAPI. The secondary antibody was Alexa Fluor® 488 goat anti rabbit (ab150077), used at a dilution of 1 in 500. The cells were fixed in 4% PFA and permeabilized using 0.1% Triton X 100. The negative control is shown in bottom right hand panel - for the negative control, purified ab32441 was used at a dilution of 1/200 followed by an Alexa Fluor® 594 goat anti-mouse antibody (ab150120) at a dilution of 1/500.
Intracellular Flow Cytometry analysis of HeLa (human cervix adenocarcinoma) cells labeling SIRT1 (red) with ab32441 at a 1/200 dilution. Cells were fixed with 4% paraformaldehyde and permeabilized with 90% methanol. A goat anti-rabbit IgG (Alexa Fluor® 488) (ab150077) was used as the secondary antibody at a 1/2000 dilution. Black - Rabbit monoclonal IgG (ab172730). Blue (unlabeled control) - Cells without incubation with the primary and secondary antibodies.

All lanes : Anti-SIRT1 antibody [E104] (ab32441) at 1/20000 dilution (purified)

Lane 1 : Jurkat cell lysate
Lane 2 : HeLa cell lysate
Lane 3 : HEK293 cell lysate
Lane 4 : A549 cell lysate
Lane 5 : SW480 cell lysate

Lysates/proteins at 20 µg per lane.

Secondary

All lanes : HRP goat anti-rabbit IgG (H+L) at 1/1000 dilution

Predicted band size: 82 kDa
Additional bands at: 110 kDa (possible glycosylated form)

Blocking buffer and concentration: 5% NFDM/TBST.
Diluting buffer and concentration: 5% NFDM /TBST.
ab32441 (purified) at 1/30 immunoprecipitating SIRT1 in Jurkat cells (Lane 1). For western blotting, a HRP-conjugated anti-rabbit IgG (H+L) was used as the secondary antibody (1/1000).

Blocking buffer and concentration: 5% NFDM/TBST.

Diluting buffer and concentration: 5% NFDM/TBST.

All lanes: Anti-SIRT1 antibody [E104] (ab32441) at 1/20000 dilution

Lane 1: HeLa whole cell lysate
Lane 2: HepG2 whole cell lysate
Lane 3: Human Testis tissue lysate
Lane 4: Human Colon tissue lysate

Lysates/proteins at 20 µg per lane.

Secondary

All lanes: Goat Anti-Rabbit IgG H&L (HRP) preadsorbed at 1/10000 dilution

Developed using the ECL technique.

Performed under reducing conditions.

Predicted band size: 82 kDa
Observed band size: 110 kDa

Exposure time: 150 seconds

This blot was produced using a 4-12% Bis-tris gel under the MOPS buffer system. The gel was run at 200V for 50 minutes before being transferred onto a Nitrocellulose membrane at 30V for 70 minutes. The membrane was then blocked for an hour using 3% Milk before
being incubated with ab32441 overnight at 4°C. Antibody binding was detected using an anti-rabbit antibody conjugated to HRP, and visualised using ECL development solution.

IHC image of SIRT1 staining in a section of formalin-fixed paraffin-embedded normal human colon performed on a Leica BOND™ system using the standard protocol F. The section was pre-treated using heat mediated antigen retrieval with sodium citrate buffer (pH6, epitope retrieval solution 1) for 20mins. The section was then incubated with ab32441, 1/250 dilution, for 15 mins at room temperature and detected using an HRP conjugated compact polymer system. DAB was used as the chromogen. The section was then counterstained with haematoxylin and mounted with DPX. The inset secondary-only control image is taken from an identical assay without primary antibody.

For other IHC staining systems (automated and non-automated) customers should optimize variable parameters such as antigen retrieval conditions, primary antibody concentration and antibody incubation times.

*Tissue obtained from the Human Research Tissue Bank, supported by the NIHR Cambridge Biomedical Research Centre

Immunohistochemical staining of paraffin embedded human cerebral cortex with purified ab32441 at a working dilution of 1 in 150. The secondary antibody used is a HRP polymer for rabbit IgG. The sample is counter-stained with hematoxylin. Antigen retrieval was performed using Tris-EDTA buffer, pH 9.0. PBS was used instead of the primary antibody as the negative control, and is shown in the inset.
Immunohistochemical analysis of paraffin-embedded human colon carcinoma using unpurified ab32441 at 1/100 dilution.

Immunohistochemical analysis of paraffin-embedded human lung squamous carcinoma using unpurified ab32441 at 1/100 dilution.

Please note: All products are "FOR RESEARCH USE ONLY, NOT FOR USE IN DIAGNOSTIC PROCEDURES"
Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours

- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors