abcam

Product datasheet

D. melanogaster ISWI (acetyl K753) peptide ab16064

1 References 1 Image

Description

Product name D. melanogaster ISWI (acetyl K753) peptide

Purity > 90 % HPLC.

Accession Q24368

Animal free No

Nature Synthetic

Species Drosophila melanogaster

Description D. melanogaster ISWI (acetyl K753) peptide

Specifications

Our Abpromise guarantee covers the use of ab16064 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications Blocking

Form Liquid

Additional notes - First try to dissolve a small amount of peptide in either water or buffer. The more charged

residues on a peptide, the more soluble it is in aqueous solutions.

- If the peptide doesn't dissolve try an organic solvent e.g. DMSO, then dilute using water or

buffer.

- Consider that any solvent used must be compatible with your assay. If a peptide does not

dissolve and you need to recover it, lyophilise to remove the solvent.

- Gentle warming and sonication can effectively aid peptide solubilisation. If the solution is

cloudy or has gelled the peptide may be in suspension rather than solubilised.

- Peptides containing cysteine are easily oxidised, so should be prepared in solution just prior

to use.

Preparation and Storage

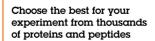
Stability and Storage Shipped at 4°C. Upon delivery aliquot and store at -20°C or -80°C. Avoid repeated freeze / thaw

cycles.

Information available upon request.

1

General Info


Relevance ISWI is a component of the nucleosome remodeling factor complex (NURF), a protein complex

that facilitates the perturbation of chromatin structure in vitro in an ATP-dependent manner. The hydrolysis of ATP during the remodeling of chromatin is likely to be mediated by ISWI, releasing inorganic phosphate. It is also a component of the ATP-utilizing chromatin assembly and remodeling factor (ACF) and of the chromatin accessibility complex (CHRAC). This subunit may

serve as the energy-transducing component of chromatin-remodeling machines.

Cellular localization Nuclear

Images

Reinforce the validity of your results with **protein controls**

Validate specific, reliable reagents with **blocking peptides**

Keep working on targets without specific antibodies with **fusion-tagged proteins**

Get consistent, reproducible results with premium **bioactive proteins**

D. melanogaster ISWI (acetyl K753) peptide (ab16064)

To learn more about our protein and peptide range click here.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors	
		3