abcam

Product datasheet

Recombinant human Alpha-synuclein (mutated A53T) protein monomer Type 1 (Active) ab256149

2 Images

Description

Product name Recombinant human Alpha-synuclein (mutated A53T) protein monomer Type 1 (Active)

Biological activity 100 μM ab256149 seeded with 10 nM ab256150 in 25 μM Thioflavin T (PBS pH 7.4, 100 μI

reaction volume) generated a fluorescence intensity of 28 000 Relative Fluorescence Units after incubation at 37°C with shaking at 600 rpm for 56 hours. Fluorescence was measured by excitation at 450 nm and emission at 485 nm on a Molecular Devices Gemini XPS microplate

reader.

Purity > 95 % SDS-PAGE.

Purified by ion-exchange chromatography.

Expression system Escherichia coli

Accession P37840

Protein length Full length protein

Animal free No

Nature Recombinant

Species Human

Sequence MDVFMKGLSKAKEGVVAAAEKTKQGVAEAAGKTKEGVL

YVGSKTKEGVVH

GVTTVAEKTKEQVTNVGGAVVTGVTAVAQKTVEGAGSIA

AATGFVKKDQL

GKNEEGAPQEGILEDMPVDPDNEAYEMPSEEGYQDYEP

EΑ

Predicted molecular weight 14 kDa

Amino acids 1 to 140

Modifications mutated A53T

Additional sequence information NP 000336.1

Description Recombinant human Alpha-synuclein (mutated A53T) protein (Active)

Specifications

Our **Abpromise guarantee** covers the use of **ab256149** in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

1

Applications Functional Studies

SDS-PAGE

Form Liquid

Additional notes Monomer.

Preparation and Storage

Stability and Storage Shipped on Dry Ice. Store at -80°C.

pH: 7.40

Constituent: PBS

This product is an active protein and may elicit a biological response in vivo, handle with caution.

General Info

Function May be involved in the regulation of dopamine release and transport. Induces fibrillization of

microtubule-associated protein tau. Reduces neuronal responsiveness to various apoptotic

stimuli, leading to a decreased caspase-3 activation.

Tissue specificity Expressed principally in brain but is also expressed in low concentrations in all tissues examined

except in liver. Concentrated in presynaptic nerve terminals.

Involvement in diseaseGenetic alterations of SNCA resulting in aberrant polymerization into fibrils, are associated with

several neurodegenerative diseases (synucleinopathies). SNCA fibrillar aggregates represent the major non A-beta component of Alzheimer disease amyloid plaque, and a major component of Lewy body inclusions. They are also found within Lewy body (LB)-like intraneuronal inclusions, glial inclusions and axonal spheroids in neurodegeneration with brain iron accumulation type 1.

Parkinson disease 1 Parkinson disease 4 Dementia Lewy body

Sequence similaritiesBelongs to the synuclein family.

DomainThe 'non A-beta component of Alzheimer disease amyloid plaque' domain (NAC domain) is

involved in fibrils formation. The middle hydrophobic region forms the core of the filaments. The C-

terminus may regulate aggregation and determine the diameter of the filaments.

Post-translational Phosphorylated, predominantly on serine residues. Phosphorylation by CK1 appears to occur on **modifications** residues distinct from the residue phosphorylated by other kinases. Phosphorylation of Ser-129 is

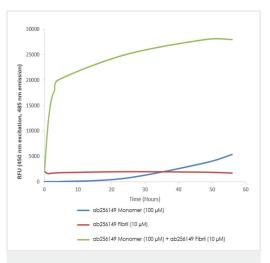
selective and extensive in synucleinopathy lesions. In vitro, phosphorylation at Ser-129 promoted insoluble fibril formation. Phosphorylated on Tyr-125 by a PTK2B-dependent pathway upon

osmotic stress.

Hallmark lesions of neurodegenerative synucleinopathies contain alpha-synuclein that is modified

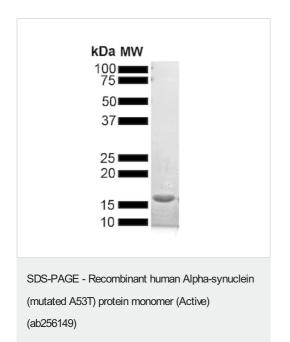
by nitration of tyrosine residues and possibly by dityrosine cross-linking to generated stable

oligomers.


Ubiquitinated. The predominant conjugate is the diubiquitinated form.

Acetylation at Met-1 seems to be important for proper folding and native oligomeric structure.

Cytoplasm, cytosol. Membrane. Nucleus. Cell junction, synapse. Secreted. Membrane-bound in


dopaminergic neurons.

Images

Functional Studies - Recombinant human Alphasynuclein (mutated A53T) protein monomer Type 1 (Active) (ab256149)

Thioflavin T is a fluorescent dye that binds to beta sheet-rich structures such as those in alpha synuclein fibrils. Upon binding, the emission spectrum of the dye experiences a red-shift and increased fluorescence intensity. Thioflavin T emission curves show a limited increase in fluorescence (correlated to alpha synuclein aggregation) over time in A53T alpha synuclein monomers (ab256149). A much greater increase in fluorescence is seen when 100 μ M monomer (ab256149) is combined with 10 μ M of fibrils (ab256150) as the fibrils seed the formation of new fibrils from the pool of active monomers. Thioflavin T ex = 450 nm, em = 485 nm.

SDS-PAGE - Recombinant Alpha-Synuclein Monomer (mutated A53T) protein (ab256149).

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- · Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors