abcam

Product datasheet

Recombinant human CD116 protein (Fc Chimera) ab83993

2 Images

Description

Product name Recombinant human CD116 protein (Fc Chimera)

Biological activity ab83993 bound to protein A sepharose beads was able to pull down its ligand, GM-CSF.

Purity > 95 % SDS-PAGE.

Expression system HEK 293 cells

Accession P15509

Protein length Full length protein

Animal free No

Nature Recombinant

Species Human

Sequence Theoretical Sequence:

EKSDLRTVAPASSLNVRFDSRTMNLSWDCQENTTFSKCF

LTDKKNRVV

EPRLSNNECSCTFREICLHEGVTFEVHVNTSQRGFQQKLL

YPNSGREG

TAAQNFSCFIYNADLMNCTWARGPTAPRDVQYFLYIRNSK

RRREIRCP

YYIQDSGTHVGCHLDNLSGLTSRNYFLVNGTSREIGIQFFD

SLLDTKK

IERFNPPSNVTVRCNTTHCLVRWKQPRTYQKLSYLDFQYQ

LDVHRKNT

QPGTENLLINVSGDLENRYNFPSSEPRAKHSVKIRAADVRI

LNWSSWS

EAIEFGSDDGGSSNTKVDKKVEPKSCDKTHTCPPCPAPE

LLGGPSVFL

FPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDG

VEVHNAKTK

PREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALP

APIEKTISK

AKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIA

VEWESNGQ

PENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSC

1

SVMHEALHN HYTQKSLSLSPGK

Additional sequence information Fusion of aa 1-320 of human GM-CSF Receptor alpha and aa 90-330 of Fc region of human lgG1 (P01857). The chimeric protein was expressed in modified human 293 cells.

Specifications

Our Abpromise quarantee covers the use of ab83993 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications SDS-PAGE

Form Lyophilized

Additional notes ab83993 bound to protein A sepharose beads was able to pull down its ligand, GM-CSF.

This product was previously labelled as GM-CSF Receptor alpha

Preparation and Storage

Stability and Storage Shipped at 4°C. Store at +4°C.

Constituents: 1% Human serum albumin, 10% Trehalose

This product is an active protein and may elicit a biological response in vivo, handle with caution.

Reconstitution It is recommended that 0.5 ml of sterile phosphate-buffered saline be added to the vial. Following

reconstitution short-term storage at 4°C is recommended, and longer-term storage of aliquots at -

18 to -20°C. Repeated freeze thawing is not recommended.

General Info

Function Low affinity receptor for granulocyte-macrophage colony-stimulating factor. Transduces a signal

that results in the proliferation, differentiation, and functional activation of hematopoietic cells.

Involvement in disease Defects in CSF2RA are the cause of pulmonary surfactant metabolism dysfunction type 4

> (SMDP4) [MIM:300770]. A rare lung disorder due to impaired surfactant homeostasis. It is characterized by alveolar filling with floccular material that stains positive using the periodic acid-Schiff method and is derived from surfactant phospholipids and protein components. Excessive

lipoproteins accumulation in the alveoli results in severe respiratory distress.

Sequence similarities Belongs to the type I cytokine receptor family. Type 5 subfamily.

Domain The WSXWS motif appears to be necessary for proper protein folding and thereby efficient

intracellular transport and cell-surface receptor binding.

The box 1 motif is required for JAK interaction and/or activation.

Cellular localization Secreted and Cell membrane.

Images

Functional Studies - Recombinant human CD116 protein (Fc Chimera) (ab83993)

The densitometry scan demonstrates the purified human cell expressed protein exists in multiple isoforms, which differ according to their level of post-translational modification.

The triangle indicates the theoretical MW and pl of the protein.

SDS-PAGE - Recombinant human CD116 protein (Fc Chimera) (ab83993)

1D SDS-PAGE of ab83993 before and after treatment with glycosidases to remove oligosaccharides.

Lane 1: ab83993

Lane 2: ab83993 treated with PNGase F to remove potential N-linked glycans

Lane 3: ab83993 treated with a glycosidase cocktail to remove potential N- and O-linked glycans.

Approximately 5 μg of protein was loaded per lane; Gel was stained using Deep PurpleTM.

Drop in MW after treatment with PNGase F indicates presence of N-linked glycans. A tightening of the band after treatment with the glycosidase cocktail indicates O-linked glycans may be present. Additional bands in lane 2 and lane 3 are glycosidase enzymes.

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

•	Guarantee only valid for products bought direct from Abcam or one of our authorized distributors