abcam

Product datasheet

Recombinant Human Lamin A protein ab83472

1 References 1 Image

Description

Product name Recombinant Human Lamin A protein

Purity > 90 % SDS-PAGE.

Expression system Escherichia coli

Accession P02545-1

Protein length Full length protein

Animal free No

Nature Recombinant

Species Human

Sequence MAHHHHHHVGTGSNDDDDKSPDMETPSQRRATRSGAQ

ASSTPLSPTRITR

LQEKEDLQELNDRLAVYIDRVHSLETENAGLRLRITESEEV

VSREVSGIK

AAYEAELGDARKTLDSVAKERARLQLELSKVREEFKELK

ARNTKKEGDLI

AAQARLKDLEALLNSKEAALSTALSEKRTLEGELHDLRGQ

VAKLEAALGE

AKKQLQDEMLRRVDAENRLQTMKEELDFQKNIYSEELRE

TKRRHETRLVE

IDNGKQREFESRLADALQELRAQHEDQVEQYKKELEKTY

SAKLDNARQSA

ERNSNLVGAAHEELQQSRIRIDSLSAQLSQLQKQLAAKEA

KLRDLEDSLA

RERDTSRRLLAEKEREMAEMRARMQQQLDEYQELLDIKL

ALDMEIHAYRK

LLEGEEERLRLSPSPTSQRSRGRASSHSSQTQGGGSVTK

KRKLESTESRS

SFSQHARTSGRVAVEEVDEEGKFVRLRNKSNEDQSMGN

WQIKRQNGDDPL

LTYRFPPKFTLKAGQVVTIWAAGAGATHSPPTDLVWKAQ

NTWGCGNSLRT

ALINSTGEEVAMRKLVRSVTVVEDDEDEDGDDLLHHHHG

SHCSSSGDPAE

YNLRSRTVLCGTCGQPADKASASGSGAQVGGPISSGSSA

1

Amino acids 1 to 645

Tags His tag N-Terminus, DDDDK tag N-Terminus

Our Abpromise guarantee covers the use of ab83472 in the following tested applications.

The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications Western blot

SDS-PAGE

Liquid

Preparation and Storage

Shipped at 4°C. Upon delivery aliquot and store at -20°C. Avoid freeze / thaw cycles.

pH: 7.00

Constituents: 20% Glycerol, 0.003% Sodium chloride, Phosphate Buffer, 0.015% DTT, 0.044%

EDTA

General Info

Lamins are components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the

inner nuclear membrane, which is thought to provide a framework for the nuclear envelope and may also interact with chromatin. Lamin A and C are present in equal amounts in the lamina of mammals. Play an important role in nuclear assembly, chromatin organization, nuclear membrane

and telomere dynamics.

Prelamin-A/C can accelerate smooth muscle cell senescence. It acts to disrupt mitosis and induce DNA damage in vascular smooth muscle cells (VSMCs), leading to mitotic failure,

genomic instability, and premature senescence.

In the arteries, prelamin-A/C accumulation is not observed in young healthy vessels but is

prevalent in medial vascular smooth muscle celle (VSMCs) from aged individuals and in atherosclerotic lesions, where it often colocalizes with senescent and degenerate VSMCs. Prelamin-A/C expression increases with age and disease. In normal aging, the accumulation of

prelamin-A/C is caused in part by the down-regulation of ZMPSTE24/FACE1 in response to

oxidative stress.

Involvement in disease Defects in LMNA are the cause of Emery-Dreifuss muscular dystrophy type 2 (EDMD2)

> [MIM:181350]. A degenerative myopathy characterized by weakness and atrophy of muscle without involvement of the nervous system, early contractures of the elbows, Achilles tendons and

spine, and cardiomyopathy associated with cardiac conduction defects.

Defects in LMNA are the cause of cardiomyopathy dilated type 1A (CMD1A) [MIM:115200]. Dilated cardiomyopathy is a disorder characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia. Patients are at risk of premature

death.

Defects in LMNA are the cause of familial partial lipodystrophy type 2 (FPLD2) [MIM:151660]; also known as familial partial lipodystrophy Dunnigan type. A disorder characterized by the loss of subcutaneous adipose tissue in the lower parts of the body (limbs, buttocks, trunk). It is

accompanied by an accumulation of adipose tissue in the face and neck causing a double chin,

2

Specifications

Form

Stability and Storage

Function

Tissue specificity

fat neck, or cushingoid appearance. Adipose tissue may also accumulate in the axillae, back, labia majora, and intraabdominal region. Affected patients are insulin-resistant and may develop glucose intolerance and diabetes mellitus after age 20 years, hypertriglyceridemia, and low levels of high density lipoprotein cholesterol.

Defects in LMNA are the cause of limb-girdle muscular dystrophy type 1B (LGMD1B) [MIM:159001]. LGMD1B is an autosomal dominant degenerative myopathy with age-related atrioventricular cardiac conduction disturbances, dilated cardiomyopathy, and the absence of early contractures. LGMD1B is characterized by slowly progressive skeletal muscle weakness of the hip and shoulder girdles. Muscle biopsy shows mild dystrophic changes.

Defects in LMNA are the cause of Charcot-Marie-Tooth disease type 2B1 (CMT2B1) [MIM:605588]. CMT2B1 is a form of Charcot-Marie-Tooth disease, the most common inherited disorder of the peripheral nervous system. Charcot-Marie-Tooth disease is classified in two main groups on the basis of electrophysiologic properties and histopathology: primary peripheral demyelinating neuropathy or CMT1, and primary peripheral axonal neuropathy or CMT2. Neuropathies of the CMT2 group are characterized by signs of axonal regeneration in the absence of obvious myelin alterations, normal or slightly reduced nerve conduction velocities, and progressive distal muscle weakness and atrophy. CMT2B1 inheritance is autosomal recessive. Defects in LMNA are the cause of Hutchinson-Gilford progeria syndrome (HGPS) [MIM:176670]. HGPS is a rare genetic disorder characterized by features reminiscent of marked premature aging. Note=HGPS is caused by the toxic accumulation of a mutant form of lamin-A/C. This mutant protein, called progerin, acts to deregulate mitosis and DNA damage signaling, leading to premature cell death and senescence. Progerin lacks the conserved ZMPSTE24/FACE1 cleavage site and therefore remains permanently farnesylated. Thus, although it can enter the nucleus and associate with the nuclear envelope, it cannot incorporate normally into the nuclear lamina.

Defects in LMNA are the cause of cardiomyopathy dilated with hypergonadotropic hypogonadism (CMDHH) [MIM:212112]. A disorder characterized by the association of genital anomalies, hypergonadotropic hypogonadism and dilated cardiomyopathy. Patients can present other variable clinical manifestations including mental retardation, skeletal anomalies, scleroderma-like skin, graying and thinning of hair, osteoporosis. Dilated cardiomyopathy is characterized by ventricular dilation and impaired systolic function, resulting in congestive heart failure and arrhythmia.

Defects in LMNA are the cause of mandibuloacral dysplasia with type A lipodystrophy (MADA) [MIM:248370]. A disorder characterized by mandibular and clavicular hypoplasia, acroosteolysis, delayed closure of the cranial suture, progeroide appearance, partial alopecia, soft tissue calcinosis, joint contractures, and partial lipodystrophy with loss of subcutaneous fat from the extremities. Adipose tissue in the face, neck and trunk is normal or increased. Defects in LMNA are a cause of lethal tight skin contracture syndrome (LTSCS) [MIM:275210]; also known as restrictive dermopathy (RD). Lethal tight skin contracture syndrome is a rare disorder mainly characterized by intrauterine growth retardation, tight and rigid skin with erosions, prominent superficial vasculature and epidermal hyperkeratosis, facial features (small mouth, small pinched nose and micrognathia), sparse/absent eyelashes and eyebrows, mineralization defects of the skull, thin dysplastic clavicles, pulmonary hypoplasia, multiple joint contractures and an early neonatal lethal course. Liveborn children usually die within the first week of life. The overall prevalence of consanguineous cases suggested an autosomal recessive inheritance. Defects in LMNA are the cause of heart-hand syndrome Slovenian type (HHS-Slovenian) [MIM:610140]. Heart-hand syndrome (HHS) is a clinically and genetically heterogeneous disorder characterized by the co-occurrence of a congenital cardiac disease and limb malformations. Defects in LMNA are the cause of muscular dystrophy congenital LMNA-related (CMD-LMNA) [MIM:613205]. It is a form of congenital muscular dystrophy. Patients present at birth, or within the first few months of life, with hypotonia, muscle weakness and often with joint contractures.

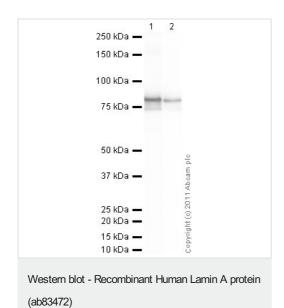
Sequence similarities

Belongs to the intermediate filament family.

Post-translational modifications

Increased phosphorylation of the lamins occurs before envelope disintegration and probably plays a role in regulating lamin associations.

Proteolytic cleavage of the C-terminal of 18 residues of prelamin-A/C results in the production of lamin-A/C. The prelamin-A/C maturation pathway includes farnesylation of CAAX motif, ZMPSTE24/FACE1 mediated cleavage of the last three amino acids, methylation of the C-


ZMPSTE24/FACE1 mediated cleavage of the last three amino acids, methylation of the C-terminal cysteine and endoproteolytic removal of the last 15 C-terminal amino acids. Proteolytic cleavage requires prior farnesylation and methylation, and absence of these blocks cleavage.

Sumoylation is necessary for the localization to the nuclear envelope. Farnesylation of prelamin-A/C facilitates nuclear envelope targeting.

Cellular localization

Nucleus. Nucleus envelope. Farnesylation of prelamin-A/C facilitates nuclear envelope targeting and subsequent cleaveage by ZMPSTE24/FACE1 to remove the farnesyl group produces mature lamin-A/C, which can then be inserted into the nuclear lamina. EMD is required for proper localization of non-farnesylated prelamin-A/C.

Images

All lanes: Anti-Lamin A antibody (ab26300) at 1 µg/ml

Lane 1 : Recombinant Human Lamin A protein (ab83472) at 0.1 μ g Lane 2 : Recombinant Human Lamin A protein (ab83472) at 0.01 μ g

Secondary

All lanes : Goat Anti-Rabbit IgG H&L (HRP) preadsorbed (**ab97080**) at 1/5000 dilution

Developed using the ECL technique.

Performed under reducing conditions.

Predicted band size: 70 kDa

Exposure time: 10 seconds

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- · Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish

- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

• Guarantee only valid for products bought direct from Abcam or one of our authorized distributors