ab108721 – Anti-Chlamydia pneumoniae IgG Human ELISA Kit

Instructions for Use

For the qualitative measurement of IgG class antibodies against Chlamydia pneumoniae in Human serum and plasma (citrate).

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND 2
2. ASSAY SUMMARY 2

GENERAL INFORMATION
3. PRECAUTIONS 5
4. STORAGE AND STABILITY 5
5. MATERIALS SUPPLIED 5
6. MATERIALS REQUIRED, NOT SUPPLIED 6
7. LIMITATIONS 6
8. TECHNICAL HINTS 7

ASSAY PREPARATION
9. REAGENT PREPARATION 8
10. SAMPLE COLLECTION AND STORAGE 8
11. SAMPLE PREPARATION 8
12. PLATE PREPARATION 9

ASSAY PROCEDURE
13. ASSAY PROCEDURE 10

DATA ANALYSIS
14. CALCULATIONS 12
15. TYPICAL SAMPLE VALUES 14
16. ASSAY ANALYTICAL SPECS 14

RESOURCES
17. INTERFERENCES 15
18. TROUBLESHOOTING 15
19. NOTES 17
1. BACKGROUND

Abcam’s anti-Chlamydia pneumoniae IgG Human in vitro ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for the accurate qualitative measurement of IgG class antibodies against Chlamydia pneumoniae in Human serum and plasma.

A 96-well plate has been precoated with Chlamydia pneumoniae antigens to bind cognate antibodies. Controls or test samples are added to the wells and incubated. Following washing, a horseradish peroxidase (HRP) labelled anti-Human IgG conjugate is added to the wells, which binds to the immobilized Chlamydia pneumoniae-specific antibodies. TMB is then catalyzed by the HRP to produce a blue color product that changes to yellow after adding an acidic stop solution. The density of yellow coloration is directly proportional to the amount of Chlamydia pneumoniae IgG sample captured in plate.

Chlamydiae are nonmotile, Gram negative, obligatory intracellular bacteria which form characteristic inclusions within the cytoplasm of infected cells. They are easily visible under the light microscope. There are three known species pathogenic to Humans: Chlamydia trachomatis, Chlamydia pneumoniae and Chlamydia psittaci, and one species only pathogenic to animals (C. pecorum). Chlamydia trachomatis is the most prevalent agent of sexually transmitted diseases worldwide (400-500 million cases) with continued emergence. Pregnant women infected with C trachomatis may transmit the bacteria during parturition, causing conjunctivitis and pneumonia. Untreated cases of chlamydia infections can lead to chronic salpingitis, potentially resulting in ectopic pregnancy or infertility. In males, C. trachomatis is a major cause of non-gonococcal urethritis.

A severe problem in Chlamydia infections is the frequent asymptomatic insidious course which may result in the initiation of chronic disease. In many instances primary infections are not recognized and only the sequelae caused by ascended, persisting agents are diagnosed.
<table>
<thead>
<tr>
<th>Species</th>
<th>Disease</th>
<th>Mechanism of Infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. trachomatis</td>
<td>Lymphogranuloma venereum (LGV)</td>
<td>Direct or sexual transmission: The primary site of infection usually is the mucous membranes of the eye or the urogenital tract</td>
</tr>
<tr>
<td></td>
<td>Trachoma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion conjunctivitis of neonates and adults</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cervicitis, salpingitis, urethritis, epididymitis, proctitis and pneumonia of newborns</td>
<td></td>
</tr>
<tr>
<td>C. pneumoniae</td>
<td>Respiratory diseases discussed: endocarditis, coronary heart diseases</td>
<td>Infiltration of the mucous membrane of the respiratory tract</td>
</tr>
<tr>
<td>C. psittaci</td>
<td>Ornithosis (Psittacosis)</td>
<td>Inhalation of feces from infected birds; contact with infected avian viscera</td>
</tr>
</tbody>
</table>

Infection may be identified by
- Microscopy: Giemsa stain
- PCR
- Serology: Detection of antigens by ELISA
 Detection of antibodies by IF, EIA, ELISA
2. ASSAY SUMMARY

Prepare all reagents, samples and controls as instructed.

Add samples and controls to wells used. Incubate at 37°C.

Wash each well and add prepared labeled HRP-Conjugate. Incubate at room temperature.

After washing, add TMB substrate solution to each well. Incubate at room temperature. Add Stop Solution to each well. Read immediately.
3. PRECAUTIONS
Please read these instructions carefully prior to beginning the assay.

All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. STORAGE AND STABILITY
Store kit at 2-8°C immediately upon receipt.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in section 9. Reagent Preparation.

5. MATERIALS SUPPLIED

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydia pneumoniae (IgG) Coated Microplate (12 x 8 wells)</td>
<td>96 Wells</td>
<td>2-8°C</td>
</tr>
<tr>
<td>IgG Sample Diluent***</td>
<td>100 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>15 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>20X Washing Solution*</td>
<td>50 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>Chlamydia pneumoniae anti-IgG HRP Conjugate**</td>
<td>20 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>TMB Substrate Solution</td>
<td>15 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>Chlamydia pneumoniae IgG Positive Control***</td>
<td>2 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>Chlamydia pneumoniae IgG Cut-off Control***</td>
<td>3 mL</td>
<td>2-8°C</td>
</tr>
<tr>
<td>Chlamydia pneumoniae IgG Negative Control***</td>
<td>2 mL</td>
<td>2-8°C</td>
</tr>
</tbody>
</table>

* Contains 0.1 % Bronidox L after dilution
** Contains 0.2 % Bronidox L
*** Contains 0.1 % Kathon
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- Microplate reader capable of measuring absorbance at 450 nm or 620 nm
- Incubator at 37°C
- Multi and single channel pipettes to deliver volumes between 10 and 1,000 µL
- Optional: Automatic plate washer for rinsing wells
- Vortex tube mixer
- Deionised or (freshly) distilled water
- Disposable tubes
- Timer

7. **LIMITATIONS**

- ELISA kit intended for research use only. Not for use in diagnostic procedures
- All components of Human origin used for the production of these reagents have been tested for anti-HIV antibodies, anti-HCV antibodies and HBsAg and have been found to be non-reactive. Nevertheless, all materials should still be regarded and handled as potentially infectious
- Use only clean pipette tips, dispensers, and lab ware.
- Do not interchange screw caps of reagent vials to avoid cross-contamination
- Close reagent vials tightly immediately after use to avoid evaporation and microbial contamination
- After first opening and subsequent storage check conjugate and control vials for microbial contamination prior to further use
8. **TECHNICAL HINTS**

- Avoid foaming or bubbles when mixing or reconstituting components
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps
- Complete removal of all solutions and buffers during wash steps is necessary for accurate measurement readings
- **This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions**
9. REAGENT PREPARATION

Equilibrate all reagents, samples and controls to room temperature (18-25°C) prior to use.

9.1 1X Washing Solution

Prepare 1X Washing Solution by diluting 20X Washing Solution with deionized water. To make 200 mL 1X Washing Solution combine 10 mL 20X Washing Solution with 190 mL deionized water. Mix thoroughly and gently.

- All other solutions are supplied ready to use

10. SAMPLE COLLECTION AND STORAGE

- Use Human serum or plasma (citrate) samples with this assay. If the assay is performed within 5 days of sample collection, the specimen should be kept at 2-8°C; otherwise it should be aliquotted and stored deep-frozen (-20 to -80°C). If samples are stored frozen, mix thawed samples well before testing.

Avoid repeated freezing and thawing.

Heat inactivation of samples is not recommended

11. SAMPLE PREPARATION

- Before assaying, all samples should be diluted 1:100 with IgG Sample Diluent. Add 10 µL sample to 1 mL IgG Sample Diluent to obtain a 1:100 dilution. Mix gently and thoroughly.
12. PLATE PREPARATION

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused well strips should be returned to the plate packet and stored at 4°C.
- For each assay performed, a minimum of 1 well must be used as a blank, omitting sample and conjugate from well addition.
- For statistical reasons, we recommend each standard and sample should be assayed with a minimum of two replicates (duplicates).
13. ASSAY PROCEDURE

- Equilibrate all materials and prepared reagents to room temperature prior to use.

- Please read the test protocol carefully before performing the assay. Reliability of results depends on strict adherence to the test protocol as described.

- If performing the test on ELISA automatic systems we recommend increasing the washing steps from three to five and the volume of washing solution from 300 µL to 350 µL to avoid washing effects.

- All controls (Chlamydia pneumoniae IgG Positive, Chlamydia pneumoniae IgG Negative and Chlamydia pneumoniae IgG Cut-off) must be included with each assay performed to determine test results.

- Assay all standards, controls and samples in duplicate.

13.1. Prepare all reagents, standards, and samples as directed in the previous sections.

13.2. Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, reseal and return to 4°C storage.

13.3. Add 100 µL of controls and diluted samples into appropriate wells. Leave one well for substrate blank.

13.4. Cover wells with the foil supplied in the kit and incubate for 1 hour at 37°C.

13.5. Remove the foil, aspirate the contents of the wells and wash each well three times with 300 µL of 1X Washing Solution. Avoid spill over into neighboring wells. The soak time between each wash cycle should be >5 sec. After the last wash, remove the remaining 1X Washing Solution by aspiration or decanting. Invert the plate and blot it against clean paper towels to remove excess liquid.

Note: Complete removal of liquid at each step is essential for good assay performance.
13.6. Add 100 µL Chlamydia pneumoniae anti-IgG HRP Conjugate into all wells except for the blank well. Cover with foil.

13.7. Incubate for 30 minutes at room temperature. Do not expose to direct sunlight.

13.8. Repeat step 13.5.

13.9. Add 100 µL TMB Substrate Solution into all wells

13.10. Incubate for exactly 15 minutes at room temperature in the dark.

13.11. Add 100 µL Stop Solution into all wells in the same order and at the same rate as for the TMB Substrate Solution.

Note: Any blue color developed during the incubation turns into yellow.

13.12. Highly positive samples can cause dark precipitates of the chromogen. These precipitates have an influence when reading the optical density. Predilution of the sample with PBS for example 1:1, is recommended. Then dilute the sample 1:100 with IgG Sample Diluent and multiply the results in Standard Units by 2 (See Section 14. Calculations.)

13.13. Measure the absorbance of the specimen at 450 nm within 30 minutes of addition of the Stop Solution.

Dual wavelength reading using 620 nm as reference wavelength is recommended.
14. CALCULATIONS

In order for an assay to be considered valid, the following criteria must be met:

- **Substrate blank:** Absorbance value < 0.100
- **Negative control:** Absorbance value < 0.200 and < cut-off
- **Cut-off control:** Absorbance value 0.150 – 1.300
- **Positive control:** Absorbance value > cut-off

If these criteria are not met, the test is not valid and must be repeated.

Calculation of Results

Calculate the mean background subtracted absorbances for each sample and compare to mean Cut-off control value.

The Cut-off control value is the mean absorbance value of the Cut-off control wells.

Example: Absorbance value Cut-off control Well 1 = 0.156
Absorbance value Cut-off control Well 2 = 0.168

Mean Cut Off value: \((0.156 + 0.168)/2 = 0.162\)

Interpretation of Results

Samples are considered to give a positive signal if the absorbance value is greater than 10% over the cut-off value.

Samples with an absorbance value of less than 10% above or below the Cut-off control value should be considered as inconclusive (grey zone) i.e. neither positive or negative. It is recommended to repeat the assay using fresh samples. If results of the second test are again less than 10% above or below the Cut-off control value the sample has to be considered negative.

Samples are considered negative if the absorbance value is lower than 10% below the cut-off.
Results in Standard Units

Patient (mean) absorbance value \times 10 = \text{Standard Units} \quad \text{Cut-off}

\text{Example:} \quad \frac{1.786 \times 10}{0.38} = 47 \quad \text{Standard Units}

\begin{align*}
\text{Cut-off:} & \quad 10 \quad \text{Standard Units} \\
\text{Grey zone:} & \quad 9-11 \quad \text{Standard Units} \\
\text{Negative:} & \quad <9 \quad \text{Standard Units} \\
\text{Positive:} & \quad >11 \quad \text{Standard Units}
\end{align*}
15. **TYPICAL SAMPLE VALUES**

PRECISION –

<table>
<thead>
<tr>
<th>Positive Serum</th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>Mean</td>
<td>0.41</td>
<td>9</td>
</tr>
<tr>
<td>%CV</td>
<td>7.2</td>
<td>10.6</td>
</tr>
</tbody>
</table>

16. **ASSAY ANALYTICAL SPECS**

SPECIFICITY -

The specificity is 91.7 % and is defined as the probability of the assay scoring negative in the absence of the specific analyte.

SENSITIVITY -

The sensitivity is 90.2 % and is defined as the probability of the assay scoring positive in the presence of the specific analyte.
17. INTERFERENCES
Interferences with hemolytic, lipemic or icteric sera are not observed up to a concentration of 10 mg/mL hemoglobin, 5 mg/mL triglycerides and 0.2 mg/mL bilirubin.

18. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low signal</td>
<td>Incubation time to short</td>
<td>Try overnight incubation at 4 °C</td>
</tr>
<tr>
<td></td>
<td>Precipitate can form in wells upon substrate addition when concentration of target is too high</td>
<td>Increase dilution factor of sample</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
<tr>
<td></td>
<td>Sample prepared incorrectly</td>
<td>Ensure proper sample preparation/dilution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Bubbles in wells</td>
<td>Ensure no bubbles present prior to reading plate</td>
</tr>
<tr>
<td></td>
<td>All wells not washed equally/thoroughly</td>
<td>Check that all ports of plate washer are unobstructed/wash wells as recommended</td>
</tr>
<tr>
<td></td>
<td>Incomplete reagent mixing</td>
<td>Ensure all reagents/master mixes are mixed thoroughly</td>
</tr>
<tr>
<td></td>
<td>Inconsistent pipetting</td>
<td>Use calibrated pipettes & ensure accurate pipetting</td>
</tr>
<tr>
<td></td>
<td>Inconsistent sample preparation or storage</td>
<td>Ensure consistent sample preparation and optimal sample storage conditions (e.g. minimize freeze/thaws cycles)</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Wells are insufficiently washed</td>
<td>Wash wells as per protocol recommendations</td>
<td></td>
</tr>
<tr>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
<td></td>
</tr>
<tr>
<td>Waiting too long to read plate after adding stop solution</td>
<td>Read plate immediately after adding stop solution</td>
<td></td>
</tr>
<tr>
<td>Improper storage of ELISA kit</td>
<td>Store all reagents as recommended. Please note all reagents may not have identical storage requirements.</td>
<td></td>
</tr>
<tr>
<td>Using incompatible sample type (e.g. Serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
<td></td>
</tr>
</tbody>
</table>
19. NOTES
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 400 921 0189 / +86 21 2070 0500

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2013 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.