ab108799
alpha 1 Antitrypsin (SERPINA1) human ELISA Kit

For the quantitative measurement of human alpha 1 Antitrypsin in urine, milk, saliva, CSF, cell lysate and cell culture supernatants.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview .. 1
2. Protocol Summary 2
3. Precautions .. 3
4. Storage and Stability 3
5. Limitations ... 4
6. Materials Supplied 4
7. Materials Required, Not Supplied 5
8. Technical Hints .. 6
9. Reagent Preparation 7
10. Standard Preparation 10
11. Sample Preparation 12
12. Plate Preparation .. 14
13. Assay Procedure ... 14
14. Calculations ... 16
15. Typical Data .. 16
16. Typical Sample Values 17
17. Assay Specificity ... 18
18. Species Reactivity 18
19. Troubleshooting .. 19
20. Notes .. 21
1. Overview

alpha 1 Antitrypsin (SERPINA1) Human in vitro ELISA (Enzyme-Linked Immunosorbent Assay) kit (ab108799) is designed for the quantitative measurement of alpha 1 Antitrypsin in urine, milk, saliva, CSF, cell lysate and cell culture supernatants.

An alpha 1 antitrypsin specific antibody has been precoated onto 96-well plates and blocked. Standards or test samples are added to the wells and subsequently an alpha 1 antitrypsin specific biotinylated detection antibody is added and then followed by washing with wash buffer. Streptavidin-Peroxidase Complex is added and unbound conjugates are washed away with wash buffer. TMB is then used to visualize Streptavidin-Peroxidase enzymatic reaction. TMB is catalyzed by Streptavidin-Peroxidase to produce a blue color product that changes into yellow after adding acidic stop solution. The density of yellow coloration is directly proportional to the amount of alpha 1 antitrypsin captured in plate.

Alpha-1 antitrypsin is a protein that protects the lungs. The liver usually makes the protein and releases it into the bloodstream. alpha 1 Antitrypsin is a major protease inhibitor that controls tissue degradation. A reduction of alpha 1 Antitrypsin levels can cause a change in collagen metabolism. Alpha 1 Antitrypsin inhibits neutrophil elastase release into the lungs during inflammatory states. Alpha 1 Antitrypsin deficiency is an uncommon genetic disease that can lead to emphysema, hepatitis, cirrhosis, and chronic obstructive pulmonary disease (COPD).
2. Protocol Summary

Prepare all reagents, samples, and standards as instructed

↓

Add standard or sample to appropriate wells.
Incubate at room temperature.

↓

Wash and add prepared biotin antibody to each well.
Incubate at room temperature.

↓

Wash and add prepared Streptavidin-Peroxidase Conjugate.
Incubate at room temperature.

↓

Add Chromogen Substrate to each well.
Incubate at room temperature.

↓

Add Stop Solution to each well. Read immediately.
3. Precautions

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.
- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.
- Reagents should be treated as possible mutagens and should be handled with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.
- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipet by mouth. Do not eat, drink or smoke in the laboratory areas.
- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. Storage and Stability

Store kit at +4°C immediately upon receipt, apart from the SP Conjugate & Biotinylated Antibody, which should be stored at -20°C. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Materials Supplied section.
5. Limitations

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

6. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>alpha 1 Antitrypsin Microplate (12 x 8 wells)</td>
<td>96 wells</td>
<td>4°C</td>
</tr>
<tr>
<td>alpha 1 Antitrypsin Standard</td>
<td>1 vial</td>
<td>4°C</td>
</tr>
<tr>
<td>10X Diluent N Concentrate</td>
<td>30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Biotinylated human alpha 1 Antitrypsin Antibody</td>
<td>1 vial</td>
<td>-20°C</td>
</tr>
<tr>
<td>100X Streptavidin-Peroxidase Conjugate (SP Conjugate)</td>
<td>80 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>Chromogen Substrate</td>
<td>8 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>20X Wash Buffer Concentrate</td>
<td>2 x 30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Sealing Tapes</td>
<td>3</td>
<td>N/A</td>
</tr>
</tbody>
</table>
7. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Microplate reader capable of measuring absorbance at 450 nm.
- Precision pipettes to deliver 1 µL to 1 mL volumes.
- Adjustable 1-25 mL pipettes for reagent preparation.
- 100 mL and 1 liter graduated cylinders.
- Absorbent paper.
- Distilled or deionized water.
- Log-log graph paper or computer and software for ELISA data analysis.
- 6 tubes to prepare standard or sample dilutions.
8. Technical Hints

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.

- Selected components in this kit are supplied in surplus amount to account for additional dilutions, evaporation, or instrumentation settings where higher volumes are required. They should be disposed of in accordance with established safety procedures.

- Make sure all buffers and solutions are at room temperature before starting the experiment.

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.

- Avoid foaming or bubbles when mixing or reconstituting components.

- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.

- Ensure plates are properly sealed or covered during incubation steps.

- Make sure you have the right type of plate for your detection method of choice.

- Make sure the heat block/water bath and microplate reader are switched on before starting the experiment.
9. Reagent Preparation

- Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells.
- Prepare only as much reagent as is needed on the day of the experiment.
- If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.

9.1 1X Diluent N
Dilute the 10X Diluent N Concentrate 1:10 with reagent grade water. Mix gently and thoroughly. Store for up to 1 month at 4°C.

9.2 1X Wash Buffer
Dilute the 20X Wash Buffer Concentrate 1:20 with reagent grade water. Mix gently and thoroughly.

9.3 1X Biotinylated alpha 1 Antitrypsin Detector Antibody
9.3.1 The stock Biotinylated alpha 1 Antitrypsin Antibody must be diluted with 1X Diluent N according to the label concentration to prepare 1X Biotinylated alpha 1 Antitrypsin Antibody for use in the assay procedure. Observe the label for the “X” concentration on the vial of Biotinylated alpha 1 Antitrypsin Antibody.

9.3.2 Calculate the necessary amount of 1X Diluent N to dilute the Biotinylated alpha 1 Antitrypsin Antibody to prepare a 1X Biotinylated alpha 1 Antitrypsin Antibody solution for use in the assay procedure according to how many wells you wish to use and the following calculation:

<table>
<thead>
<tr>
<th>Number of Wells Strips</th>
<th>Number of Wells</th>
<th>((V_T)) Total Volume of 1X Biotinylated Detector Antibody (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>1,760</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>2,640</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>3,520</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>4,400</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>5,280</td>
</tr>
</tbody>
</table>
Where:

$C_S = \text{Starting concentration (X) of stock Biotinylated alpha 1 Antitrypsin Antibody (variable)}$

$C_F = \text{Final concentration (always = 1X) of 1X Biotinylated alpha 1 Antitrypsin Detector Antibody solution for the assay procedure}$

$V_T = \text{Total required volume of 1X Biotinylated alpha 1 Antitrypsin Detector Antibody solution for the assay procedure}$

$V_A = \text{Total volume of (X) stock Biotinylated alpha 1 Antitrypsin Antibody}$

$V_D = \text{Total volume of 1X Diluent N required to dilute (X) stock Biotinylated alpha 1 Antitrypsin Antibody to prepare 1X Biotinylated Detector Antibody solution for assay procedures}$

Calculate the volume of (X) stock Biotinylated Antibody required for the given number of desired wells:

$$\frac{C_F}{C_S} \times V_T = V_A$$

Calculate the final volume of 1X Diluent N required to prepare the 1X Biotinylated alpha 1 Antitrypsin Detector Antibody:

$$V_T - V_A = V_D$$

Example:

NOTE: This example is for demonstration purposes only. Please remember to check your antibody vial for the actual concentration of antibody provided.

$C_S = 50X \text{ Biotinylated alpha 1 Antitrypsin Antibody stock}$

$C_F = 1X \text{ Biotinylated alpha 1 Antitrypsin Detector Antibody solution for use in the assay procedure}$

$V_T = 3,520 \mu L \ (8 \text{ well strips or 64 wells})$

$\quad \quad \quad \quad (1X/50X) \times 3,520 \mu L = 70.4 \mu L$

$\quad \quad \quad \quad 3,520 \mu L - 70.4 \mu L = 3,449.6 \mu L$

$V_A = 70.4 \mu L \text{ total volume of (X) stock Biotinylated alpha 1 Antitrypsin Antibody required}$

$V_D = 3,449.6 \mu L \text{ total volume of 1X Diluent N required to dilute the 50X stock Biotinylated Antibody to prepare 1X Biotinylated alpha 1 Antitrypsin Detector Antibody solution for assay procedures.}$

ab108799 alpha 1 Antitrypsin human ELISA Kit
9.3.3 First spin the Biotinylated alpha 1 Antitrypsin Antibody vial to collect the contents at the bottom.

9.3.4 Add calculated amount V_A of stock Biotinylated alpha 1 Antitrypsin Antibody to the calculated amount V_D of 1X Assay Diluent N. Mix gently and thoroughly.

9.4 1X SP Conjugate
Spin down the 100X Streptavidin-Peroxidase Conjugate (SP Conjugate) briefly and dilute the desired amount of the conjugate 1:100 with 1X Diluent N.

Any remaining solution should be frozen at -20°C.
10. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Any remaining standard should be stored at -20°C after reconstitution and used within 30 days.
- The following section describes the preparation of a standard curve for duplicate measurements (recommended).

10.1 Reconstitute the alpha 1 Antitrypsin Standard vial to generate a 25 ng/mL alpha 1 Antitrypsin Standard #1.

10.1.1 First consult the alpha 1 Antitrypsin Standard vial to determine the mass of protein in the vial.

10.1.2 Calculate the appropriate volume of 1X Diluent N to add when resuspending the alpha 1 Antitrypsin Standard vial to produce a 25 ng/mL alpha 1 Antitrypsin Standard #1 by using the following equation:

\[C_S = \text{Starting mass of alpha 1 Antitrypsin Standard (see vial label)} \] (ng)

\[C_F = 25 \text{ ng/mL alpha 1 Antitrypsin Standard #1 final required concentration} \]

\[V_D = \text{Required volume of 1X Diluent N for reconstitution (µL)} \]

Calculate total required volume 1X Diluent N for resuspension:

\[(C_S / C_F) \times 1,000 = V_D \]

Example:

NOTE: This example is for demonstration purposes only. Please remember to check your standard vial for the actual amount of standard provided.

\[C_S = 300 \text{ ng of alpha 1 Antitrypsin Standard in vial} \]

\[C_F = 25 \text{ ng/mL alpha 1 Antitrypsin Standard #1 final concentration} \]

\[V_D = \text{Required volume of 1X Diluent N for reconstitution} \]

\[(300 \text{ ng} / 50 \text{ ng/mL}) \times 1,000 = 6,000 \mu L \]
10.1.3 First briefly centrifuge the alpha 1 Antitrypsin Standard Vial to collect the contents on the bottom of the tube.

10.1.4 Reconstitute the alpha 1 Antitrypsin Standard vial by adding the appropriate calculated amount V_D of 1X Diluent N to the vial to generate the 25 ng/mL alpha 1 Antitrypsin Standard #1. Mix gently and thoroughly.

10.2 Allow the reconstituted 25 ng/mL alpha 1 Antitrypsin Standard #1 to sit for 10 minutes with gentle agitation prior to making subsequent dilutions

10.3 Label five tubes #2 – 6.

10.4 Add 360 µL of 1X Diluent N to tube #2 – 6.

10.5 To prepare Standard #2, add 120 µL of the Standard #1 into tube #2 and mix gently.

10.6 To prepare Standard #3, add 120 µL of the Standard #2 into tube #3 and mix gently.

10.7 Using the table below as a guide, prepare subsequent serial dilutions.

10.8 1X Diluent N serves as the zero standard (0 ng/mL) (tube #6).

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume to Dilute (µL)</th>
<th>Volume Diluent N (µL)</th>
<th>Total Volume (µL)</th>
<th>Starting Conc. (ng/mL)</th>
<th>Final Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Step 10.1</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>12.5</td>
<td>6.25</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>6.25</td>
<td>3.125</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>3.125</td>
<td>1.563</td>
</tr>
<tr>
<td>6</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>1.563</td>
<td>0.781</td>
</tr>
<tr>
<td>7</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>0.781</td>
<td>0.391</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>360</td>
<td>360</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

ab108799 alpha 1 Antitrypsin human ELISA Kit
11. Sample Preparation

11.1 Plasma:
Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3000 x g for 10 minutes and collect plasma. A 200000-fold sample dilution is suggested into 1X Diluent N. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles (EDTA or Heparin can also be used as an anticoagulant).

11.2 Serum:
Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3000 x g for 10 minutes and remove serum. A 200000-fold sample dilution is suggested into 1X Diluent N. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.3 Cell Culture Supernatant:
Centrifuge cell culture media at 3,000 x g for 10 minutes to remove debris. Collect supernatants and assay. Store the remaining samples at -20°C or below. Avoid repeated freeze-thaw cycles.

11.4 Cell lysate:
Rinse cell with cold PBS and then scrape the cell into a tube with 5 mL of cold PBS and 0.5 M EDTA. Centrifuge suspension at 1500 rpm for 10 minutes at 4°C and aspirate supernatant. Resuspend pellet in ice-cold Lysis Buffer (10 mM Tris, pH 8.0, 130 mM NaCl, 1% Triton X-100, protease inhibitor cocktail). For every 1 x 10^6 cells, add approximately 100 μL of ice-cold Lysis Buffer. Incubate on ice for 60 minutes. Centrifuge at 13000 rpm for 30 minutes at 4°C and collect supernatant. Samples can be stored at -80°C. Avoid repeated freeze-thaw cycles.

11.5 Urine:
Collect urine using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute urine samples 1:20 into 1X Diluent N or within the range of 1:2 to 1:200 and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.6 Milk:
Collect milk using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:2,000 into 1X Diluent N and assay. The
undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.7 CSF:
Collect cerebrospinal fluid (CSF) using sample pot. Centrifuge samples at 3000 x g for 10 minutes. Dilute samples 1:4000 into 1X Diluent N and assay. The undiluted samples can be stored at -80°C for up to 3 months. Avoid repeated freeze-thaw cycles.

11.8 Saliva:
Collect saliva using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:400 into 1X Diluent N or within the range of 1:40 to 1:400 and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

Refer to Dilution Guidelines for further instruction.

<table>
<thead>
<tr>
<th>Guidelines for Dilutions of 100-fold or Greater</th>
<th>1000x</th>
<th>10000x</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x</td>
<td>A) 4 µl sample + 396 µl buffer (100X)</td>
<td>A) 4 µl sample + 396 µl buffer (100X)</td>
</tr>
<tr>
<td></td>
<td>B) 4 µl of A + 396 µl buffer (100X)</td>
<td>B) 4 µl of A + 396 µl buffer (100X)</td>
</tr>
<tr>
<td></td>
<td>= 100-fold dilution</td>
<td>= 10000-fold dilution</td>
</tr>
<tr>
<td>Assuming the needed volume is less than or equal to 400 µl</td>
<td>Assuming the needed volume is less than or equal to 400 µl</td>
<td></td>
</tr>
<tr>
<td>1000x</td>
<td>A) 4 µl sample + 396 µl buffer (100X)</td>
<td>A) 4 µl sample + 396 µl buffer (100X)</td>
</tr>
<tr>
<td></td>
<td>B) 24 µl of A + 216 µl buffer (10X)</td>
<td>B) 4 µl of A + 396 µl buffer (100X)</td>
</tr>
<tr>
<td></td>
<td>= 1000-fold dilution</td>
<td>= 100000-fold dilution</td>
</tr>
<tr>
<td>Assuming the needed volume is less than or equal to 240 µl</td>
<td>Assuming the needed volume is less than or equal to 240 µl</td>
<td></td>
</tr>
</tbody>
</table>
12. Plate Preparation

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused well plate strips should be returned to the plate packet and stored at 4°C.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

13. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections. The assay is performed at room temperature (18-25°C).

13.2 Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccants inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.

13.3 Add 50 μL of alpha 1 Antitrypsin Standard or sample per well. Cover wells with a sealing tape and incubate for 2 hours. Start the timer after the last sample addition.

13.4 Wash five times with 200 μL of 1X Wash Buffer manually. Invert the plate each time and decant the contents; hit 4-5 times on absorbent material to completely remove the liquid. If using a machine, wash six times with 300 μL of Wash Buffer and then invert the plate, decanting the contents; hit 4-5 times on absorbent material to completely remove the liquid.

13.5 Add 50 μL of 1X Biotinylated alpha 1 Antitrypsin Antibody to each well and incubate for 1 hour.

13.6 Wash the microplate as described above.

13.7 Add 50 μL of 1X Streptavidin-Peroxidase Conjugate per well and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.

13.8 Wash the microplate as described above.
13.9 Add 50 μL of Chromogen Substrate per well and incubate for about 12 minutes or till the optimal blue color density develops. Gently tap the plate to ensure thorough mixing and break the bubbles in the well with pipette tip.

13.10 Add 50 μL of Stop Solution to each well. The color will change from blue to yellow.

13.11 Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.
14. Calculations

Calculate the mean value of the triplicate readings for each standard and sample. To generate a Standard Curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit. Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.

15. Typical Data

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Figure 1](image_url)

Figure 1. Example of alpha 1 Antitrypsin standard curve. The standard curve was prepared as described in Section 10. Raw data values are shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
16. Typical Sample Values

SENSITIVITY –
The minimum detectable dose (MDD) of human alpha 1 Antitrypsin is typically 0.32 ng/ml.

PRECISION –

<table>
<thead>
<tr>
<th></th>
<th>Intra-assay Precision</th>
<th>Inter-Assay Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV (%)</td>
<td>5.1</td>
<td>10.0</td>
</tr>
</tbody>
</table>

RECOVERY –

<table>
<thead>
<tr>
<th>Standard Added Value</th>
<th>1.5 – 10 ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery (%)</td>
<td>98-110 %</td>
</tr>
<tr>
<td>Average Recovery (%)</td>
<td>103 %</td>
</tr>
</tbody>
</table>

LINEARITY OF DILUTION -
Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.
Milk samples were serially-diluted to test for linearity.

<table>
<thead>
<tr>
<th>Average Percentage of Expected Value (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dilution Factor</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>100,000</td>
</tr>
<tr>
<td>200,000</td>
</tr>
<tr>
<td>400,000</td>
</tr>
</tbody>
</table>
17. Assay Specificity

This kit recognizes alpha 1 Antitrypsin in urine, milk, saliva, CSF and cell culture supernatants

INTERFERENCES –
If cell culture supernatants contain 10% FBS, the minimum detectable does of human alpha 1 Antitrypsin will be 0.55 ng/ml.

18. Species Reactivity

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine</td>
<td>None</td>
</tr>
<tr>
<td>Mouse</td>
<td>None</td>
</tr>
<tr>
<td>Monkey</td>
<td><5</td>
</tr>
<tr>
<td>Bovine</td>
<td>None</td>
</tr>
<tr>
<td>Rat</td>
<td>None</td>
</tr>
<tr>
<td>Rabbit</td>
<td>None</td>
</tr>
<tr>
<td>Swine</td>
<td>None</td>
</tr>
</tbody>
</table>

Please contact our Technical Support team for more information.
19. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Improper standard dilution</td>
<td>Confirm dilutions made correctly</td>
</tr>
<tr>
<td></td>
<td>Standard improperly reconstituted (if applicable)</td>
<td>Briefly spin vial before opening; thoroughly resuspend powder (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Standard degraded</td>
<td>Store sample as recommended</td>
</tr>
<tr>
<td></td>
<td>Curve doesn't fit scale</td>
<td>Try plotting using different scale</td>
</tr>
<tr>
<td>Low signal</td>
<td>Incubation time too short</td>
<td>Try overnight incubation at 4°C</td>
</tr>
<tr>
<td></td>
<td>Target present below detection limits of assay</td>
<td>Decrease dilution factor; concentrate samples</td>
</tr>
<tr>
<td></td>
<td>Precipitate can form in wells upon substrate addition when concentration of target is too high</td>
<td>Increase dilution factor of sample</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
<tr>
<td></td>
<td>Sample prepared incorrectly</td>
<td>Ensure proper sample preparation/dilution</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Large CV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bubbles in wells</td>
<td>Ensure no bubbles present prior to reading plate</td>
<td></td>
</tr>
<tr>
<td>All wells not washed equally/thoroughly</td>
<td>Check that all ports of plate washer are unobstructed wash wells as recommended</td>
<td></td>
</tr>
<tr>
<td>Incomplete reagent mixing</td>
<td>Ensure all reagents/master mixes are mixed thoroughly</td>
<td></td>
</tr>
<tr>
<td>Inconsistent pipetting</td>
<td>Use calibrated pipettes and ensure accurate pipetting</td>
<td></td>
</tr>
<tr>
<td>Inconsistent sample preparation or storage</td>
<td>Ensure consistent sample preparation and optimal sample storage conditions (eg. minimize freeze/thaws cycles)</td>
<td></td>
</tr>
<tr>
<td>Wells are insufficiently washed</td>
<td>Wash wells as per protocol recommendations</td>
<td></td>
</tr>
<tr>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
<td></td>
</tr>
<tr>
<td>Waiting too long to read plate after adding STOP solution</td>
<td>Read plate immediately after adding STOP solution</td>
<td></td>
</tr>
<tr>
<td>Improper storage of ELISA kit</td>
<td>Store all reagents as recommended. Please note all reagents may not have identical storage requirements.</td>
<td></td>
</tr>
<tr>
<td>Using incompatible sample type (e.g. Serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
<td></td>
</tr>
</tbody>
</table>
20. Notes
Technical Support

Copyright © 2019 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

Austria
wissenschaftlicherdienst@abcam.com | 019-288-259

France
supportscientifique@abcam.com | 01.46.94.62.96

Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154

Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com

UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
can.technical@abcam.com | 877-749-8807

US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823

China
cn.technical@abcam.com | 400 921 0189 / +86 21 2070 0500

Japan
technical@abcam.co.jp | +81-(0)3-6231-0940

Singapore
sg.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450

New Zealand
nz.technical@abcam.com | +64-(0)9-909-7829