ab108847 – Fibronectin Human ELISA Kit

Instructions for Use

For the quantitative measurement of Human Fibronectin in urine, saliva, milk, cerebrospinal fluid and cell culture supernatants.

This product is for research use only and is not intended for diagnostic use.
INTRODUCTION

1. BACKGROUND

Abcam’s Fibronectin Human *in vitro* ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of Fibronectin levels in urine, saliva, milk, cerebrospinal fluid and cell culture supernatants.

A Fibronectin specific antibody has been precoated onto 96-well plates and blocked. Standards or test samples are added to the wells and subsequently a Fibronectin specific biotinylated detection antibody is added and then followed by washing with wash buffer. Streptavidin-Peroxidase Conjugate is added and unbound conjugates are washed away with wash buffer. TMB is then used to visualize Streptavidin-Peroxidase enzymatic reaction. TMB is catalyzed by Streptavidin-Peroxidase to produce a blue color product that changes into yellow after adding acidic stop solution. The density of yellow coloration is directly proportional to the amount of Fibronectin captured in plate.

Fibronectin (FN) is a major component of the extracellular matrix and blood plasma, and is a specific ligand for several integrin adhesion receptors. Fibronectin plays an important role not only in cell adhesion and wound healing, but also in embryogenesis and hematopoiesis. Fibronectin is over-expressed in cardiovascular disease states such as atherosclerosis and myocardial infarction. Reduced levels of Fibronectin have been reported in patients with Disseminated Intravascular Coagulation (DIC) and low concentrations appear to correlate with a poor prognosis.
2. **ASSAY SUMMARY**

Primary capture antibody
Prepare all reagents, samples and standards as instructed.

Sample
Add standard or sample to each well used. Incubate at room temperature.

Primary detector antibody
Wash and add prepared biotin antibody to each well. Incubate at room temperature.

Streptavidin Label
Wash and add prepared Streptavidin-Peroxidase Conjugate. Incubate at room temperature.

Substrate Colored product
Add Chromogen Substrate to each well. Incubate at room temperature. Add Stop Solution to each well. Read immediately.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at 4°C immediately upon receipt, apart from the SP Conjugate & Biotinylated Antibody, which should be stored at -20°C.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in sections 9 & 10.

5. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibronectin Microplate (12 x 8 well strips)</td>
<td>96 wells</td>
<td>4°C</td>
</tr>
<tr>
<td>Fibronectin Standard</td>
<td>1 vial</td>
<td>4°C</td>
</tr>
<tr>
<td>10X Diluent N Concentrate</td>
<td>30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Biotinylated Human Fibronectin Antibody</td>
<td>1 vial</td>
<td>-20°C</td>
</tr>
<tr>
<td>100X Streptavidin-Peroxidase Conjugate (SP Conjugate)</td>
<td>80 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>Chromogen Substrate</td>
<td>8 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>20X Wash Buffer Concentrate</td>
<td>2 x 30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Sealing Tapes</td>
<td>3</td>
<td>N/A</td>
</tr>
</tbody>
</table>
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- 1 Microplate reader capable of measuring absorbance at 450 nm.
- Precision pipettes to deliver 1 µL to 1 mL volumes.
- Adjustable 1-25 mL pipettes for reagent preparation.
- 100 mL and 1 liter graduated cylinders.
- Absorbent paper.
- Distilled or deionized water.
- Log-log graph paper or computer and software for ELISA data analysis.
- 6 tubes to prepare standard or sample dilutions.

7. **LIMITATIONS**

- Do not mix or substitute reagents or materials from other kit lots or vendors.
8. TECHNICAL HINTS

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Complete removal of all solutions and buffers during wash steps.
- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
9. REAGENT PREPARATION

Equilibrate all reagents to room temperature (18-25°C) prior to use. Prepare fresh reagents immediately prior to use. If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.

9.1 1X Diluent N

Dilute the 10X Diluent N Concentrate 1:10 with reagent grade water. Mix gently and thoroughly. Store for up to 1 month at 4°C.

9.2 1X Wash Buffer

Dilute the 20X Wash Buffer Concentrate 1:20 with reagent grade water. Mix gently and thoroughly.

9.3 1X Biotinylated Fibronectin Detector Antibody

9.3.1 The stock Biotinylated Fibronectin Antibody must be diluted with 1X Diluent N according to the label concentration to prepare 1X Biotinylated Fibronectin Antibody for use in the assay procedure. Observe the label for the “X” concentration on the vial of Biotinylated Fibronectin Antibody.

9.3.2 Calculate the necessary amount of 1X Diluent N to dilute the Biotinylated Fibronectin Antibody to prepare a 1X Biotinylated Fibronectin Antibody solution for use in the assay procedure according to how many wells you wish to use and the following calculation:

<table>
<thead>
<tr>
<th>Number of Wells Strips</th>
<th>Number of Wells</th>
<th>(V_T) Total Volume of 1X Biotinylated Antibody (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>1,760</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>2,640</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>3,520</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>4,400</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>5,280</td>
</tr>
</tbody>
</table>

Any remaining solution should be frozen at -20°C.
ASSAY PREPARATION

Where:

\[C_S = \text{Starting concentration (X) of stock Biotinylated Fibronectin Antibody (variable)} \]

\[C_F = \text{Final concentration (always = 1X) of 1X Biotinylated Fibronectin Antibody solution for the assay procedure} \]

\[V_T = \text{Total required volume of 1X Biotinylated Fibronectin Antibody solution for the assay procedure} \]

\[V_A = \text{Total volume of (X) stock Biotinylated Fibronectin Antibody} \]

\[V_D = \text{Total volume of 1X Diluent N required to dilute (X) stock Biotinylated Fibronectin Antibody to prepare 1X Biotinylated Fibronectin solution for assay procedures} \]

Calculate the volume of (X) stock Biotinylated Antibody required for the given number of desired wells:

\[
(C_F / C_S) \times V_T = V_A
\]

Calculate the final volume of 1X Diluent N required to prepare the 1X Biotinylated Fibronectin Antibody:

\[
V_T - V_A = V_D
\]

Example:

NOTE: This example is for demonstration purposes only. Please remember to check your antibody vial for the actual concentration of antibody provided.

\[C_S = 50X \text{ Biotinylated Fibronectin Antibody stock} \]

\[C_F = 1X \text{ Biotinylated Fibronectin Antibody solution for use in the assay procedure} \]

\[V_T = 3,520 \mu L \text{ (8 well strips or 64 wells)} \]

\[
(1X/50X) \times 3,520 \mu L = 70.4 \mu L
\]

\[
3,520 \mu L - 70.4 \mu L = 3,449.6 \mu L
\]

\[V_A = 70.4 \mu L \text{ total volume of (X) stock Biotinylated Fibronectin Antibody required} \]

\[V_D = 3,449.6 \mu L \text{ total volume of 1X Diluent N required to dilute the 50X stock Biotinylated Antibody to prepare 1X Biotinylated Fibronectin Antibody solution for assay procedures} \]
9.3.3 First spin the Biotinylated Fibronectin Antibody vial to collect the contents at the bottom.

9.3.4 Add calculated amount V_A of stock Biotinylated Fibronectin Antibody to the calculated amount V_D of 1X Diluent N. Mix gently and thoroughly.

9.4 **1X SP Conjugate**

Spin down the 100X Streptavidin-Peroxidase Conjugate (SP Conjugate) briefly and dilute the desired amount of the conjugate 1:100 with 1X Diluent N.

Any remaining solution should be frozen at -20°C.
10. STANDARD PREPARATIONS

- Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of standards for every use.
- Any remaining standard should be stored at -20°C after reconstitution and used within 30 days.
- This procedure prepares sufficient standard dilutions for duplicate wells.

10.1 Reconstitution of the Fibronectin Standard vial to prepare the 1 μg/mL Fibronectin Standard #1:

10.1.1 First consult the Fibronectin Standard vial to determine the mass of protein in the vial.

10.1.2 Calculate the appropriate volume of 1X Diluent N to add when resuspending the Fibronectin Standard vial to produce a 1 μg/mL Standard #1 by using the following equation:

\[C_S = \text{Starting mass of Fibronectin Standard (see vial label) (µg)} \]
\[C_F = 1 \text{ µg/mL Fibronectin Standard #1 final required concentration} \]
\[V_D = \text{Required volume of 1X Diluent N for reconstitution (µL)} \]

Calculate total required volume 1X Diluent N for resuspension:

\[\left(\frac{C_S}{C_F} \right) \times 1,000 = V_D \]

Example:

NOTE: This example is for demonstration purposes only. Please remember to check your standard vial for the actual amount of standard provided.

\[C_S = 1.5 \text{ µg of Fibronectin standard in vial} \]
\[C_F = 1 \text{ µg/mL Fibronectin Standard final concentration} \]
\[V_D = \text{Required volume of 1X Diluent N for reconstitution} \]

\[(1.5 \text{ µg} / 1 \text{ µg/mL}) \times 1,000 = 1,500 \text{ µL} \]
10.1.3 First briefly spin the Fibronectin Standard Vial to collect the contents on the bottom of the tube.

10.1.4 Reconstitute the Fibronectin Standard vial by adding the appropriate calculated amount V_D of 1X Diluent N to the vial to generate the 1 µg/mL Standard #1. Mix gently and thoroughly.

10.2 Allow the reconstituted 1 µg/mL Fibronectin Standard #1 to sit for 10 minutes with gentle agitation prior to making subsequent dilutions.

10.3 Label five tubes #2 – 6.

10.4 Add 360 µL of 1X Diluent N to tube #2 – 6.

10.5 To prepare Standard #2, add 120 µL of the Standard #1 into tube #2 and mix gently.

10.6 To prepare Standard #3, add 120 µL of the Standard #2 into tube #3 and mix gently.

10.7 Using the table below as a guide, prepare subsequent serial dilutions.

10.8 1X Diluent N serves as the zero standard, 0 µg/mL (tube #6).
Standard Dilution Preparation Table

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume to Dilute (µL)</th>
<th>Volume Diluent N (µL)</th>
<th>Total Volume (µL)</th>
<th>Starting Conc. (µg/mL)</th>
<th>Final Conc. (µg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Step 10.1</td>
<td></td>
<td></td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>1.000</td>
<td>0.250</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>0.250</td>
<td>0.063</td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>0.063</td>
<td>0.016</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>360</td>
<td>480</td>
<td>0.016</td>
<td>0.004</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>360</td>
<td>360</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

![Diagram of dilution process](image-url)
11. SAMPLE PREPARATION

11.1 Urine

Collect urine using sample pot. Centrifuge samples at 800 x g for 10 minutes. Dilute samples 1:2 into 1X Diluent N and assay. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.2 Cell Culture Supernatants

Centrifuge cell culture supernatants at 3,000 x g for 10 minutes to remove debris. Collect supernatants and assay. Store samples at -20°C or below. Avoid repeated freeze-thaw cycles.

11.3 Saliva

Collect saliva using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute saliva 1:20 in 1X Diluent N or within the range of 1:20 to 1:80 and assay. The user should determine the optimal dilution factor. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.4 Milk

Collect milk using sample tube. Centrifuge samples at 800 x g for 10 minutes. Milk dilution is suggested at 1:200 in 1X Diluent N; however, the user should determine the optimal dilution factor. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.5 Cerebrospinal Fluid

Collect cerebrospinal fluid using sample tube. Centrifuge samples at 3,000 x g for 10 minutes. Dilution samples 1:100 in 1X Diluent N and assay. The undiluted samples can be stored at -80°C for up to 3 months. Avoid repeated freeze-thaw cycles.
12. PLATE PREPARATION

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused well plate strips should be returned to the plate packet and stored at 4°C.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Well effects have not been observed with this assay. Contents of each well can be recorded on the template sheet included in the Resources section.
13. ASSAY PROCEDURE

- Equilibrate all materials and prepared reagents to room temperature (18 - 25°C) prior to use.

- It is recommended to assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards and samples as instructed. Equilibrate reagents to room temperature before use. The assay is performed at room temperature (18-25°C).

13.2 Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccant inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.

13.3 Add 50 μL of Fibronectin standard or sample per well. Cover wells with a sealing tape and incubate for two hours. Start the timer after the last sample addition.

13.4 Wash five times with 200 μL of 1X Wash Buffer manually. Invert the plate each time and decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid. If using a machine wash six times with 300 μL of 1X Wash Buffer and then invert the plate, decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid.

13.5 Add 50 μL of 1X Biotinylated Fibronectin Antibody to each well and incubate for one hour.

13.6 Wash microplate as described above.

13.7 Add 50 μL of 1X SP Conjugate to each well and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.

13.8 Wash microplate as described above.

13.9 Add 50 μL of Chromogen Substrate per well and incubate for about 12 minutes or till the optimal blue colour density
develops. Gently tap plate to ensure thorough mixing and break the bubbles in the well with pipette tip.

13.10 Add 50 μL of Stop Solution to each well. The color will change from blue to yellow.

13.11 Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.
14. **CALCULATIONS**

Calculate the mean value of the triplicate readings for each standard and sample. To generate a Standard Curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit. Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.
DATA ANALYSIS

15. TYPICAL DATA

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.
16. **TYPICAL SAMPLE VALUES**

SENSITIVITY –
The minimum detectable dose of Fibronectin is typically ~0.004 µg/mL.

RECOVERY –
Standard Added Value: 0.01 – 0.25 µg/mL
Recovery %: 89 – 113.
Average Recovery %: 97.5

LINEARITY OF DILUTION –

<table>
<thead>
<tr>
<th>Urine Dilution</th>
<th>Average % Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Dilution</td>
<td>91</td>
</tr>
<tr>
<td>1:2</td>
<td>97</td>
</tr>
<tr>
<td>1:4</td>
<td>106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Milk Dilution</th>
<th>Average % Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:100</td>
<td>93</td>
</tr>
<tr>
<td>1:200</td>
<td>98</td>
</tr>
<tr>
<td>1:400</td>
<td>107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Saliva Dilution</th>
<th>Average % Expected Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:10</td>
<td>90</td>
</tr>
<tr>
<td>1:20</td>
<td>97</td>
</tr>
<tr>
<td>1:40</td>
<td>101</td>
</tr>
</tbody>
</table>
DATA ANALYSIS

PRECISION –

<table>
<thead>
<tr>
<th>% CV</th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.9</td>
<td>7.0</td>
</tr>
</tbody>
</table>

RECOVERY –

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monkey</td>
<td><25</td>
</tr>
<tr>
<td>Mouse</td>
<td>None</td>
</tr>
<tr>
<td>Rat</td>
<td>None</td>
</tr>
<tr>
<td>Swine</td>
<td>None</td>
</tr>
<tr>
<td>Canine</td>
<td>None</td>
</tr>
<tr>
<td>Bovine</td>
<td>None</td>
</tr>
<tr>
<td>Rabbit</td>
<td>None</td>
</tr>
<tr>
<td>Human</td>
<td>100</td>
</tr>
</tbody>
</table>
17. **ASSAY SPECIFICITY**

This kit detects Fibronectin in Human samples. Other species have not yet been tested with this kit.

Please contact our Technical Support team for more information.
18. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Improper standard dilution</td>
<td>Confirm dilutions made correctly</td>
</tr>
<tr>
<td></td>
<td>Standard improperly reconstituted (if applicable)</td>
<td>Briefly spin vial before opening; thoroughly resuspend powder (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Standard degraded</td>
<td>Store sample as recommended</td>
</tr>
<tr>
<td></td>
<td>Curve doesn't fit scale</td>
<td>Try plotting using different scale</td>
</tr>
<tr>
<td>Low signal</td>
<td>Incubation time too short</td>
<td>Try overnight incubation at 4°C</td>
</tr>
<tr>
<td></td>
<td>Target present below detection limits of assay</td>
<td>Decrease dilution factor; concentrate samples</td>
</tr>
<tr>
<td></td>
<td>Precipitate can form in wells upon substrate addition when concentration of target is too high</td>
<td>Increase dilution factor of sample</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
<tr>
<td></td>
<td>Sample prepared incorrectly</td>
<td>Ensure proper sample preparation/dilution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Bubbles in wells</td>
<td>Ensure no bubbles present prior to reading plate</td>
</tr>
<tr>
<td></td>
<td>All wells not washed equally/thoroughly</td>
<td>Check that all ports of plate washer are unobstructed wash wells as recommended</td>
</tr>
<tr>
<td></td>
<td>Incomplete reagent mixing</td>
<td>Ensure all reagents/master mixes are mixed thoroughly</td>
</tr>
<tr>
<td></td>
<td>Inconsistent pipetting</td>
<td>Use calibrated pipettes and ensure accurate pipetting</td>
</tr>
<tr>
<td></td>
<td>Inconsistent sample preparation or storage</td>
<td>Ensure consistent sample preparation and optimal sample storage conditions (eg. minimize freeze/thaws cycles)</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>High background/ Low sensitivity</td>
<td>Wells are insufficiently washed</td>
<td>Wash wells as per protocol recommendations</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
</tr>
<tr>
<td></td>
<td>Waiting too long to read plate after adding STOP solution</td>
<td>Read plate immediately after adding STOP solution</td>
</tr>
<tr>
<td></td>
<td>Improper storage of ELISA kit</td>
<td>Store all reagents as recommended. Please note all reagents may not have identical storage requirements.</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. Serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
</tbody>
</table>
19. NOTES
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 108008523689 (中國联通)

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2014 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.