ab119531 – IL-12 p70
Mouse ELISA Kit

Instructions for Use

For the quantitative measurement of Mouse IL-12 p70 concentrations in Cell culture supernatant and serum.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND 2
2. ASSAY SUMMARY 4

GENERAL INFORMATION
3. PRECAUTIONS 5
4. STORAGE AND STABILITY 5
5. MATERIALS SUPPLIED 5
6. MATERIALS REQUIRED, NOT SUPPLIED 6
7. LIMITATIONS 6
8. TECHNICAL HINTS 7

ASSAY PREPARATION
9. REAGENT PREPARATION 8
10. STANDARD PREPARATIONS 10
11. SAMPLE COLLECTION AND STORAGE 12
12. PLATE PREPARATION 13

ASSAY PROCEDURE
13. ASSAY PROCEDURE 14

DATA ANALYSIS
14. CALCULATIONS 17
15. TYPICAL DATA 18
16. TYPICAL SAMPLE VALUES 19
17. ASSAY SPECIFICITY 20

RESOURCES
18. TROUBLESHOOTING 21
19. NOTES 22
INTRODUCTION

1. BACKGROUND

Abcam’s IL-20 p70 Mouse ELISA (Enzyme-Linked Immunosorbent Assay) kit is an *in vitro* enzyme-linked immunosorbent assay for the quantitative measurement of Mouse IL-20 p70 in serum and cell culture supernatants.

IL-12 p70 specific antibodies have been precoated onto 96-well plates. Standards and test samples are added to the wells and along with a Biotin-conjugated anti-mouse IL-12 p70 detection antibody and the microplate is then incubated at room temperature. Following washing with wash buffer a Streptavidin-HRP conjugate is added to each well, incubated at room temperature and then unbound conjugates are washed away using wash buffer. TMB is added and then catalyzed by HRP to produce a blue color product that changes into yellow after adding acidic stop solution. The density of yellow coloration is directly proportional to the amount of IL-12 p70 captured on the plate.

IL-12 is a pleiotropic cytokine, formerly termed cytotoxic lymphocyte maturation factor (CLMF) or natural killer cell stimulatory factor (NKSF), which is produced primarily by stimulated macrophages. IL-12 has been shown to be a proinflammatory cytokine produced by phagocytic cells, B cells, and other antigen - presenting cells that modulate adaptive immune responses by favoring the generation of T-helper type 1 cells.

IL-12 exerts a variety of biological effects on T and natural killer cells. Apart from promotion of Th1 development and its ability to promote cytolytic activity it mediates some of its physiological activities by acting as a potent inducer of interferon (IFN) gamma production and the stimulation of other cytokines from peripheral blood T and NK cells. IFN-gamma then enhances the ability of the phagocytic cells to produce IL-12 and other proinflammatory cytokines. Thus, IL-12 induced IFN-gamma acts in a positive feedback loop that represents
an important amplifying mechanism in the inflammatory response to infections.

Its role in directing development of a Th1 type immune response from naive T cells demonstrates its critical role in regulation of the immune response and strongly suggests its potential usefulness in cancer therapy.

IL-12 is a disulfide-linked heterodimeric cytokine composed of a 35kDa light chain (p35) and a 40kDa heavy chain (p40) resulting in the only biologically active 70kDa (p70) form of IL-12. The p40 subunit can also form a homodimer which has been shown to be able to bind the IL-12 receptor and thus acts as an IL-12 antagonist. Additionally, the p40 subunit has been found to be expressed in a high excess over p70.

The critical role of IL-12 in several diseases has been shown.
2. ASSAY SUMMARY

Prepare all reagents, samples and standards as instructed.

Add standards or samples to each well used.

Add Biotin-Conjugated anti-mouse IL-12 p70 antibody to appropriate wells. Incubate the plate.

Wash and add prepared Streptavidin-HRP Conjugate to appropriate wells. Incubate at room temperature.

Wash and add TMB Substrate to each well. Add Stop Solution to each well. Read immediately.
3. **PRECAUTIONS**
Please read these instructions carefully prior to beginning the assay.
All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**
Store kit at 2-8°C immediately upon receipt.
Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in section 9 Reagent Preparation.

5. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microplate coated with anti-mouse IL-12 p70 monoclonal antibody(12 x 8 wells)</td>
<td>96 wells</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>Biotin Conjugated anti-Mouse IL-12 p70 monoclonal antibody</td>
<td>70 µL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>Streptavidin-HRP</td>
<td>150 µL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>IL-12 p70 Standard, lyophilized</td>
<td>2 Vials</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>20X Wash Buffer Concentrate</td>
<td>50 mL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>20X Assay Buffer Concentrate</td>
<td>5 mL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>Sample Diluent</td>
<td>12 mL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>TMB Substrate Solution</td>
<td>15 mL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>Stop Solution (1 M Phosphoric Acid)</td>
<td>15 mL</td>
<td>2-8 ºC</td>
</tr>
<tr>
<td>Adhesive films</td>
<td>1X 4 units</td>
<td>2-8 ºC</td>
</tr>
</tbody>
</table>
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- 5 mL and 10 mL graduated pipettes
- 5 µL to 1000 µL adjustable single channel micropipettes with disposable tips
- 50 µL to 300 µL adjustable multichannel micropipette with disposable tips
- Multichannel micropipette reservoir
- Beakers, flasks, cylinders necessary for preparation of reagents
- Device for delivery of wash solution (multichannel wash bottle or automatic wash system)
- Microplate strip reader capable of reading at 450 nm (620 nm as optional reference wave length)
- Glass-distilled or deionized water
- Statistical calculator with program to perform regression analysis

7. **LIMITATIONS**

- Assay kit intended for research use only. Not for use in diagnostic procedures
- Do not use kit or components if it has exceeded the expiration date on the kit labels
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted
8. **TECHNICAL HINTS**

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.

- Avoid foaming or bubbles when mixing or reconstituting components.

- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.

- Ensure plates are properly sealed or covered during incubation steps.

- Complete removal of all solutions and buffers during wash steps.

- As exact conditions may vary from assay to assay, a standard curve must be established for every run.

- Disposable pipette tips, flasks or glassware are preferred, reusable glassware must be washed and thoroughly rinsed of all detergents before use.

- Improper or insufficient washing at any stage of the procedure will result in either false positive or false negative results. Empty wells completely before dispensing fresh wash solution, fill with Wash Buffer as indicated for each wash cycle and do not allow wells to sit uncovered or dry for extended periods.

- The use of radio immunotherapy has significantly increased the number of patients with Human anti-mouse IgG antibodies (HAMA). HAMA may interfere with assays utilizing murine monoclonal antibodies leading to both false positive and false negative results. Serum samples containing antibodies to murine immunoglobulins can still be analyzed in such assays when murine immunoglobulins (serum, ascitic fluid, or monoclonal antibodies of irrelevant specificity) are added to the sample.

- **This kit is sold based on number of tests.** A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
9. REAGENT PREPARATION

Equilibrate all reagents and samples to room temperature (18-25°C) prior to use. If crystals have formed in the Buffer Concentrates, warm them gently until they have completely dissolved.

9.1 1X Wash Buffer

Prepare 1X Wash Buffer by diluting the 20X Wash Buffer Concentrate with distilled or deionized water. To make 500 mL 1X Wash Buffer, combine 25 mL 20X Wash Buffer Concentrate with 475 mL distilled or deionized water. Mix thoroughly and gently to avoid foaming.

Note: The 1X Wash Buffer should be stored at 2-8 °C and is stable for 30 days.

9.2 1X Assay Buffer

Prepare 1X Assay Buffer by diluting the 20X Assay Buffer Concentrate with distilled or deionized water. To make 50 mL 1X Assay Buffer, combine 2.5 mL 20X Assay Buffer Concentrate with 47.5 mL distilled or deionized water. Mix thoroughly and gently to avoid foaming.

Note: The 1X Assay Buffer should be stored at 2-8 °C and is stable for 30 days.
9.3 **1X Biotin-Conjugate**

To prepare the Biotin Conjugated Antibody, dilute the anti-mouse IL-12 monoclonal antibody 100-fold with 1X Assay Buffer. Use the following table as a guide to prepare as much 1X Biotin Conjugated Antibody as needed by adding the required volume (µL) of the Biotin Conjugated Antibody to the required volume (mL) of 1X Assay Buffer. Mix gently and thoroughly:

<table>
<thead>
<tr>
<th>Number of strips</th>
<th>Volume of Biotin-Conjugate Concentrate (µL)</th>
<th>1X Assay Buffer (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 6</td>
<td>30</td>
<td>2.97</td>
</tr>
<tr>
<td>7 - 12</td>
<td>60</td>
<td>5.94</td>
</tr>
</tbody>
</table>

Note: The Biotin Conjugate should be used within 30 minutes after dilution.

9.4 **1X Streptavidin-HRP**

To prepare the Streptavidin-HRP Conjugate, dilute the anti-Streptavidin-HRP Conjugate 200-fold with 1X Assay Buffer. Use the following table as a guide to prepare as much 1X Streptavidin-HRP Conjugate as needed by adding the required volume (µL) of the Streptavidin-HRP Conjugate to the required volume (mL) of 1X Assay Buffer. Mix gently and thoroughly.

<table>
<thead>
<tr>
<th>Number of strips</th>
<th>Volume of Streptavidin-HRP solution Concentrate (µL)</th>
<th>Volume of 1X Assay Buffer (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 6</td>
<td>30</td>
<td>5.97</td>
</tr>
<tr>
<td>7 - 12</td>
<td>60</td>
<td>11.94</td>
</tr>
</tbody>
</table>

Note: The Streptavidin-HRP should be used within 30 minutes after dilution.

- All other solutions are supplied ready to use
ASSAY PREPARATION

10. STANDARD PREPARATIONS
Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of standards for every use.

10.1 Prepare a 2,000 pg/mL Stock Standard by reconstituting one vial of the Mouse IL-12 p70 standard with the volume of distilled water stated on the label. Hold at room temperature for 10-30 minutes. The 2,000 pg/mL Stock Standard cannot be stored for later use.

10.2 Label eight tubes with numbers 1 - 8.

10.3 Add 225 µL Sample diluent into all tubes.

10.4 Prepare a 1,000 pg/mL Standard 1 by transferring 225 µL of the 2,000 pg/mL Stock Standard to tube 1. Mix thoroughly and gently.

10.5 Prepare Standard 2 by transferring 225 µL from Standard 1 to tube 2. Mix thoroughly and gently.

10.6 Prepare Standard 3 by transferring 225 µL from Standard 2 to tube 3. Mix thoroughly and gently.

10.7 Using the table below as a guide, repeat for tubes number 4 through to 7.

10.8 Standard 8 contains no protein and is the Blank control.
<table>
<thead>
<tr>
<th>Standard</th>
<th>Sample to Dilute</th>
<th>Volume to Dilute (µL)</th>
<th>Volume of Diluent (µL)</th>
<th>Starting Conc. (pg/mL)</th>
<th>Final Conc. (pg/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stock</td>
<td>225</td>
<td>225</td>
<td>2,000</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>Standard 1</td>
<td>225</td>
<td>225</td>
<td>1,000</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Standard 2</td>
<td>225</td>
<td>225</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>Standard 3</td>
<td>225</td>
<td>225</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>Standard 4</td>
<td>225</td>
<td>225</td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>6</td>
<td>Standard 5</td>
<td>225</td>
<td>225</td>
<td>62.5</td>
<td>31.3</td>
</tr>
<tr>
<td>7</td>
<td>Standard 6</td>
<td>225</td>
<td>225</td>
<td>31.3</td>
<td>15.6</td>
</tr>
<tr>
<td>8</td>
<td>None</td>
<td>-</td>
<td>225</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
11. SAMPLE COLLECTION AND STORAGE

- Cell culture supernatant and serum were tested with this assay. Other biological samples might be suitable for use in the assay. Remove serum from the clot or cells as soon as possible after clotting and separation.

- Samples containing a visible precipitate must be clarified prior to use in the assay. Do not use grossly hemolyzed or lipemic specimens.

- Samples should be aliquoted and must be stored frozen at -20°C to avoid loss of bioactive Mouse IL-12 p70. If samples are to be run within 24 hours, they may be stored at 2° to 8°C.

- Avoid repeated freeze-thaw cycles. Prior to assay, the frozen sample should be brought to room temperature slowly and mixed gently and properly diluted with 1X Sample Diluent.

- Aliquots of serum samples (spiked or unspiked) were stored at -20°C and thawed several times, and the Mouse IL-12 p70 levels determined. There was no significant loss of Mouse IL-12 p70 immunoreactivity detected by freezing and thawing.
12. **PLATE PREPARATION**

- The 96 well plate strips included with this kit are supplied ready to use.
- Unused well strips should be returned to the plate packet and stored at 2-8°C
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates)
- Well effects have not been observed with this assay.
13. **ASSAY PROCEDURE**

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

13.1. Prepare all reagents, working standards, and samples as directed in the previous sections. Determine the number of microplate strips required to test the desired number of samples plus appropriate number of wells needed for running blanks and standards.

13.2. Wash the microplate twice with approximately 400 µL 1X Wash Buffer per well with thorough aspiration of microplate contents between washes. Allow the 1X Wash Buffer to remain in the wells for about 10 - 15 seconds before aspiration. Take care not to scratch the surface of the microplate.

13.3. After the last wash step, empty wells and tap microplate on absorbent pad or paper towel to remove excess 1X Wash Buffer. Use the microplate strips immediately after washing. Alternatively the microplate strips can be placed upside down on a wet absorbent paper for not longer than 15 minutes. Do not allow wells to dry.

13.4. Pipette 100 µL of each prepared standard into appropriate wells, including the no protein control.

13.5. Pipette 50 µL Sample Diluent into sample wells.

13.6. Pipette 50 µL of each sample into the appropriate wells.

13.7. Pipette 50 µL Biotin Conjugate into all wells.

13.8. Cover with adhesive film and incubate at room temperature (18° to 25°C) for 2 hours (microplate can be incubated on a shaker set at 400 rpm).

13.9. Remove adhesive film and empty wells. Wash microplate strips 3 times according to step 13.2. Proceed immediately to step 13.10.
13.10. Add 100 µL of diluted Streptavidin-HRP to all wells.

13.11. Cover with adhesive film and incubate at room temperature (18° to 25°C) for 2 hours (microplate can be incubated on a shaker set at 400 rpm).

13.13. Add 100 µL of TMB Substrate Solution to all wells.

13.14. Incubate the microplate strips at room temperature (18 to 25°C) for 10 minutes. Avoid direct exposure to intense light.

Note: The color development on the plate should be monitored and the substrate reaction stopped (see step 13.15) before the signal in the positive wells becomes saturated. Determination of the ideal time period for color development should be done individually for each assay. It is recommended to add the stop solution when the highest standard has developed a dark blue color. Alternatively the color development can be monitored by the ELISA reader at 620 nm. The substrate reaction should be stopped as soon as Standard 1 has reached an OD of 0.9 - 0.95.

13.15. Stop the enzyme reaction by adding 100 µL of Stop Solution into each well.

Note: It is important that the Stop Solution is mixed quickly and uniformly throughout the microplate to completely inactivate the enzyme. Results must be read immediately after the Stop Solution is added or within one hour if the microplate strips are stored at 2 - 8°C in the dark.

13.16. Read absorbance of each microplate on a spectrophotometer using 450 nm as the primary wave length (optionally 620 nm as the reference wave length; 610 nm to 650 nm is acceptable). Blank the plate reader according to the manufacturer's instructions by using the
ASSAY PROCEDURE

blank wells. Determine the absorbance of both the samples and the standards.

Note: In case of incubation without shaking the obtained O.D. values may be lower than indicated below. Nevertheless the results are still valid.
14. CALCULATIONS

Average the duplicate standard reading for each standard, sample and control blank. Subtract the control blank from all mean readings. Plot the mean standard readings against their concentrations and draw the best smooth curve through these points to construct a standard curve. Most plate reader software or graphing software can plot these values and curve fit. A five parameter algorithm (5PL) usually provides the best fit, though other equations can be examined to see which provides the most accurate (e.g. linear, semi-log, log/log, 5-parameter logistic). Extrapolate protein concentrations for unknown and control samples from the standard curve plotted. Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.

If instructions in this protocol have been followed samples have been diluted 1:2 (as Step 13.6), the concentration read from the standard curve must be multiplied by the dilution factor (x 2). This should be in addition to any sample dilution undertaken by the user.

Calculation of 1:2 prediluted samples with a concentration exceeding standard 1 may result in incorrect, low mouse IL-12 p70 levels. Such samples require further external predilution according to expected mouse IL-12 p70 values with Sample Diluent in order to precisely quantitate the actual mouse IL-12 p70 level.
15. TYPICAL DATA

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

<table>
<thead>
<tr>
<th>Conc. (pg/mL)</th>
<th>O.D. 450 nm</th>
<th>Mean O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.044</td>
<td>0.042</td>
</tr>
<tr>
<td>15.6</td>
<td>0.077</td>
<td>0.078</td>
</tr>
<tr>
<td>31.3</td>
<td>0.116</td>
<td>0.121</td>
</tr>
<tr>
<td>62.5</td>
<td>0.191</td>
<td>0.202</td>
</tr>
<tr>
<td>125</td>
<td>0.345</td>
<td>0.345</td>
</tr>
<tr>
<td>250</td>
<td>0.641</td>
<td>0.649</td>
</tr>
<tr>
<td>500</td>
<td>1.166</td>
<td>1.174</td>
</tr>
<tr>
<td>1,000</td>
<td>2.009</td>
<td>1.994</td>
</tr>
</tbody>
</table>

Figure 1. Example of a Mouse IL-12 p70 protein standard curve.
16. TYPICAL SAMPLE VALUES

EXPECTED VALUES –
Serum samples from randomly selected apparently healthy mice were tested for mouse IL-12 p70. There were no detectable mouse IL-12 p70 levels found. Elevated mouse IL-12 p70 levels depend on the type of immunological disorder.

SENSITIVITY –
The limit of detection for IL-12 p70 defined as the analyte concentration resulting in an absorption significantly higher than the absorption of the dilution medium (mean plus two standard deviations) was determined to be < 10 pg/mL (mean of 6 independent assays).

RECOVERY –
Spiked samples were prepared by adding four different levels of recombinant IL-12 p70 into serum. Recoveries were determined in 3 independent experiments with 2 replicates each. The unspiked serum was used as blank in these experiments. The recovery ranged from 95% to 118% with an overall mean recovery of 106%.

DILUTION PARALLELISM –
A serum sample was assayed at four two-fold dilutions covering the working range of the standard curve. The recovery ranged from 87.7% to 117.1% with an overall recovery of 101.9%.

PRECISION –
Intra- and Inter-assay reproducibility was determined by measuring samples containing different concentrations of Mouse CD137.

<table>
<thead>
<tr>
<th></th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>%CV</td>
<td>8.3</td>
<td>11.0</td>
</tr>
</tbody>
</table>
17. **ASSAY SPECIFICITY**

The assay detects both SOD1 and SOD3 forms of Mouse. The interference of circulating factors of the immune system was evaluated by spiking these proteins at physiologically relevant concentrations into a mouse IL-12 p70 positive serum. There was no detectable cross reactivity detected.
18. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standards dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; change to overnight standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td>Samples give higher value than the highest standard</td>
<td>Starting sample concentration is too high.</td>
<td>Dilute the specimens and repeat the assay</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the kit</td>
<td>Store the all components as directed.</td>
</tr>
</tbody>
</table>
19. NOTES
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 400 921 0189 / +86 21 2070 0500

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2017 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.