ab133063 – anti-HSP70 IgG/A/M Human ELISA Kit

Instructions for Use

For quantitative detection and quantification of anti-HSP70 IgG/A/M antibodies in serum samples from human origin.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND 2
2. ASSAY SUMMARY 5

GENERAL INFORMATION
3. PRECAUTIONS 6
4. STORAGE AND STABILITY 7
5. MATERIALS SUPPLIED 7
6. MATERIALS REQUIRED, NOT SUPPLIED 8
7. LIMITATIONS 8
8. TECHNICAL HINTS 9

ASSAY PREPARATION
9. REAGENT PREPARATION 10
10. STANDARD PREPARATIONS 11
11. SAMPLE COLLECTION AND STORAGE 13
12. PLATE PREPARATION 14

ASSAY PROCEDURE
13. ASSAY PROCEDURE 15

DATA ANALYSIS
14. CALCULATIONS 16
15. TYPICAL DATA 17
16. TYPICAL SAMPLE VALUES 18
17. ASSAY SPECIFICITY 19

RESOURCES
18. TROUBLESHOOTING 20
19. NOTES 21
INTRODUCTION

1. BACKGROUND

Abcam’s anti-HSP70 IgG/A/M \textit{in vitro} ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for the accurate quantitative measurement of anti-HSP70 antibodies in serum samples from human origin.

A recombinant Human Hsp70 protein has been precoated onto 96-well plates. Standards or test samples are added to the wells, incubated and then washed. An anti-Human GAM-HRP conjugated antibody is then added and incubated. The plate is washed once more and the TMB substrate is then added which HRP catalyzes, generating a blue coloration after incubation. A stop solution is added which generates conversion to yellow color read at 450 nm which is proportional to the amount of analyte bound.

Traditional methods for detection and quantitation anti-human HSP70 antibody were accomplished by using pre-screened serum samples with a high level of anti-human HSP70 antibody. These samples were assigned a concentration of 1000 arbitrary units/ml (Aunits/ml) and were used to generate standard dose-response curves from which antibody levels in test samples were determined.

The Anti-Human HSP70 (IgG/A/M) ELISA kit uses a calibrated standard of anti-human HSP70 (IgG/A/M) antibodies isolated from pooled human sera to generate a standard curve. The kit provides researchers with a rapid, reliable and standardized method to measure the levels of antihuman HSP70 antibody levels in human serum samples by interpolating absorbance readings from the standard curve. This kit has the potential of expanding our knowledge of the role of anti-human HSP70 antibodies in the normal population and as a diagnostic tool to evaluate and monitor a variety of diseases.

The inducible heat shock protein, HSP70 (Hsp72) is part of the HSP70 family which contains a number of highly related protein isoforms.
INTRODUCTION

ranging in size from 66 kDa to 78 kDa. These proteins include both
cognate members which are found within major intracellular
compartments and highly inducible isoforms which appear to be
predominantly cytoplasmic or nuclear in distribution. Members of the
HSP70 family are molecular chaperones that are involved in many
cellular functions such as protein folding, transport, maturation and
degradation, exerting their function in an ATP-dependent manner. The
molecular chaperones of the HSP70 family recognize and bind to
nascent polypeptide chains as well as partially folded intermediates of
proteins preventing their aggregation and misfolding. Inducible
HSP70 is typically regarded as an intracellular protein. However
studies have shown the presence of soluble HSP70 and anti-HSP70
antibodies in the peripheral circulation of normal individuals and in
various disease states in the following instances.

The presence of circulating anti-HSP70 antibodies was detected more
frequently in smokers versus non-smokers. In patients with Graves' disease higher anti-HSP70 antibody levels were measured compared
to controls. Patients with uveitis were found to have circulating levels of
anti-HSP70 antibody and these levels may reflect the extent of disease
involvement within the eye. Antibodies against various heat shock
proteins including HSP70 were detected in sera of patients with dilated
cardiomyopathy as compared to healthy controls. A correlation
between anti-HSP70 antibodies and different types of vascular
diseases exists suggesting that HSP70 might be involved in the
pathogenesis and propagation of artherosclerosis. There is a possible
association of plasma anti-HSP70 antibody levels with hypertension
and harsh working conditions. Patients with severe heat-induced
symptoms showed significantly higher anti-HSP70 antibody levels.
Antibodies to HSP70 have been associated with graft-versus-host
disease in peripheral blood stem cell transplant recipients. HSP70 has
been implicated as a potential auto antigen in multiple sclerosis and
enhanced expression of several heat shock proteins including HSP70
in myelin may subsequently present as additional immune targets
involved in the progression of this disease. Anti-HSP70 antibodies may
be involved in the pathogenesis of schizophrenia and especially high anti-HSP70 titers were found in never-medicated patients. Formation of HSP70-antibody complexes in the placenta correlated with anti-HSP70 antibody levels in sera and these complexes may contribute to the induction of preterm birth. Women sensitized to these antibodies may be at increased risk for adverse pregnancy outcomes. HSP70 and anti-HSP70 antibodies may have diagnostic and prognostic value for different gynaecologic malignancies.

The ubiquitous nature of HSP70 and the high degree of sequence homology between mammals and bacterial heat shock proteins may provide a link between infection and autoimmunity. Further studies are required to evaluate the physiological and immunological relevance of circulating HSP70 and anti-HSP70 antibodies and their interaction in autoimmune and inflammatory conditions.
2. ASSAY SUMMARY

Prepare all reagents, samples and standards as instructed.

Add samples and standards to wells and incubate.

Add prepared labeled HRP-Conjugate. Incubate at room temperature.

After washing, add TMB substrate solution to each well. Incubate at room temperature. Add Stop Solution to each well. Read immediately.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

- Stop Solution 2 is a 1 normal (1N) hydrochloric acid solution. This solution is caustic; care should be taken in use.
- The activity of the Horseradish peroxidase conjugate is affected by nucleophiles such as azide, cyanide and hydroxylamine.
- We test this kit’s performance with a variety of samples, however it is possible that high levels of interfering substances may cause variation in assay results.
- The standard is derived from human serum. Treat as a biohazard.
4. **STORAGE AND STABILITY**

Store kit at 4°C immediately upon receipt, apart from the Standard, which should be stored at -20°C. Avoid multiple freeze-thaw cycles.

5. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-HSP70 Microplate (12 x 8 wells)</td>
<td>96 Wells</td>
<td>4°C</td>
</tr>
<tr>
<td>Anti-Human HSP70-HRP Conjugate</td>
<td>10 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Sample Diluent 2</td>
<td>100 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Anti-Human HSP70 Standard</td>
<td>120 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>20X Wash Buffer Concentrate</td>
<td>100 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>TMB Substrate</td>
<td>10 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Stop Solution 2</td>
<td>10 mL</td>
<td>4°C</td>
</tr>
</tbody>
</table>
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- Deionized or distilled water
- Precision pipettes capable of accurately delivering 1 to 1,000 μL
- Disposable pipette tips
- 5, 10, 25mL pipettes for reagent preparation
- 1L Graduated cylinder
- Squirt bottle, manifold dispenser, or automated microtiter plate washer
- Disposable polypropylene tubes
- Microtiter plate reader capable of measuring absorbance at 450nm

7. **LIMITATIONS**

- Assay kit intended for research use only. Not for use in diagnostic procedures
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted
8. **TECHNICAL HINTS**

- Standards should be made up in disposable tubes
- Pre-rinse the pipette tip with the reagent, use fresh pipette tips for each sample, standard and reagent
- Pipette standards and samples to the bottom of the wells
- Add the reagents to the side of the well to avoid contamination
- This kit uses break-apart microtiter strips, which allow the user to measure as many samples as desired. Unused wells must be kept desiccated at 4°C in the sealed bag provided. The wells should be used in the frame provided
- Prior to addition of substrate, ensure that there is no residual wash buffer in the wells. Any remaining wash buffer may cause variation in assay results
- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions
9. REAGENT PREPARATION

Equilibrate all reagents and samples to room temperature (18 - 25°C) prior to use.

9.1 1X Wash Buffer

Prepare the 20X Wash Buffer by bringing to room temperature and swirl gently to dissolve any crystals that may have formed from storage. Dilute 100 mL of the 20X Wash Buffer Concentrate in 1,900 mL of deionized water. Mix thoroughly and gently. This can be stored at room temperature until the kit’s expiration date, or for 4 weeks whichever comes first.

NOTE: 100mL of 20X Wash Buffer has been provided in this kit, which is sufficient for the preparation of 2L of 1X Wash Buffer. The minimum required volume of 1X Wash Buffer is 310 mL (if the complete plate is used at once). However additional 1X Wash Buffer is supplied to allow for multiple assays or alternative washing techniques.
10. STANDARD PREPARATIONS

Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of standards for every use. Diluted standards should be used within 70 minutes of preparation.

10.1 Allow the reconstituted 10,000 ng/mL anti-HSP70 IgG/A/M Stock Standard solution to warm to room temperature. The standard solution should be stored at -20°C for up to 48 hours. Avoid repeated freeze-thaw cycles.

10.2 Label seven tubes with numbers 1 – 7.

10.3 Add 500 μL sample diluent to tubes 2-7.

10.4 Prepare a 1,000 ng/mL Standard 1 by adding 100 μL of the 1,000 ng/mL Stock Standard to 900 μL of the sample diluent to tube 1. Mix thoroughly and gently.

10.5 Prepare Standard 2 by transferring 500 μL from Standard 1 to tube 2. Mix thoroughly and gently.

10.6 Prepare Standard 3 by transferring 500 μL from Standard 2 to tube 3. Mix thoroughly and gently.

10.7 Using the table below as a guide, repeat for tubes 4 through 6.

10.8 Standard 7 contains no protein and is the blank control.
ASSAY PREPARATION

<table>
<thead>
<tr>
<th>Standard</th>
<th>Sample to Dilute</th>
<th>Volume to Dilute (µL)</th>
<th>Volume of Diluent (µL)</th>
<th>Starting Conc. (ng/mL)</th>
<th>Final Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stock</td>
<td>100</td>
<td>900</td>
<td>10,000</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>Standard 1</td>
<td>500</td>
<td>500</td>
<td>1,000</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>Standard 2</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>250</td>
</tr>
<tr>
<td>4</td>
<td>Standard 3</td>
<td>500</td>
<td>500</td>
<td>250</td>
<td>125</td>
</tr>
<tr>
<td>5</td>
<td>Standard 4</td>
<td>500</td>
<td>500</td>
<td>125</td>
<td>62.5</td>
</tr>
<tr>
<td>6</td>
<td>Standard 5</td>
<td>500</td>
<td>500</td>
<td>62.5</td>
<td>31.25</td>
</tr>
<tr>
<td>7</td>
<td>None</td>
<td>-</td>
<td>500</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
11. SAMPLE COLLECTION AND STORAGE

11.1 Collection of serum -

11.1.1 Collect whole blood using a serum separator tube.

11.1.2 Allow samples to clot at room temperature for 30 minutes.

11.1.3 Centrifuge at approximately 1000 x g for 10 minutes, taking precautions to avoid hemolysis.

11.1.4 Remove serum. Transfer the serum to a labeled polypropylene tube. The serum collected is now ready for analysis using Assay Desins’ Anti-Human HSP70 (total) ELISA Kit.

11.1.5 Alternatively, the serum sample can be frozen at ≤-20°C and assayed at a later date. It is recommended that the serum be aliquoted to convenient volumes prior to storing at ≤-20°C to avoid multiple freeze thaw cycles.

11.2 Dilution of samples -

Serum can be diluted 1:1000 in Sample Diluent 2 by a 2 step serial dilution (1:10 dilution followed by a 1:100 dilution). This is a suggested starting dilution only. Additional dilutions may be necessary to ensure that sample values are within the range of the standard curve. Users must determine the optimal sample dilutions for their particular experiments.

11.2.1 Dilute prepared samples in Sample Diluent 2. Prepare at least 250 μL of diluted sample to permit assaying in duplicate.

11.2.2 Mix thoroughly.

11.2.3 Samples are now ready to be used in the Assay Procedure. Samples may be left at room temperature while Reagents are being prepared.
12. PLATE PREPARATION

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused well strips should be returned to the plate packet and stored at 4°C.
- For each assay performed, a minimum of 2 wells must be used as blanks, omitting primary antibody from well additions.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Well effects have not been observed with this assay.
13. **ASSAY PROCEDURE**

- Equilibrate all materials and prepared reagents to room temperature prior to use
- It is recommended to assay all standards, controls and samples in duplicate

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections.
13.2 Add 100 μL of Standards 1 to 6 into the appropriate wells.
13.3 Add 100 μL of the Samples into the appropriate wells.
13.4 Seal the plate and incubate for 2 hours shaking at room temperature.
13.5 Empty the contents of the wells and wash by adding 400 μL of 1X Wash Buffer to every well. Repeat the wash 3 more times for a total of 4 washes. After the final wash, empty or aspirate the wells, and firmly tap the plate on a lint free paper towel to remove any remaining wash buffer.
13.6 Add 100 μL of anti-Human Ig-HRP conjugate to every well.
13.7 Cover wells with a fresh adhesive plate sealer or plastic wrap and incubate at room temperature for 1 hour, preferably with gentle mixing.
13.8 Wash plate as described in step 13.5.
13.9 Add 100 μL of the TMB Substrate solution to every well. Incubate at room temperature for 15 minutes on a shaker.
13.10 Add 100 μL Stop Solution 2 into each well in the same order that the TMB Substrate was added. The plate should be read immediately.
13.11 Read the O.D. absorbance at 450 nm, preferably with correction between 570 and 590 nm.
14. **CALCULATIONS**

A four parameter algorithm (4PL) provides the best fit, though other equations can be examined to see which provides the most accurate (e.g. linear, semi-log, log/log, 4 parameter logistic). Interpolate protein concentrations for unknown samples from the standard curve plotted. Samples producing signals greater than that of the highest standard should be further diluted and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.

- Calculate the average net Optical Density (OD) bound for each standard and sample by subtracting the average blank control OD from the average OD bound:

 \[
 \text{Average Net OD} = \text{Average Bound OD} - \text{Average blank control OD}
 \]

- Using linear graph paper, plot the Average Net OD for each standard versus anti-HSP70 IgG/A/M concentration in each standard. Approximate a straight line through the points. The concentration of anti-HSP70 IgG/A/M in the unknowns can be determined by interpolation.
15. **TYPICAL DATA**

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Conc. (ng/mL)</th>
<th>Mean O.D. (-Blank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard 1</td>
<td>1,000</td>
<td>1.000</td>
</tr>
<tr>
<td>Standard 2</td>
<td>500</td>
<td>0.471</td>
</tr>
<tr>
<td>Standard 3</td>
<td>250</td>
<td>0.251</td>
</tr>
<tr>
<td>Standard 4</td>
<td>125</td>
<td>0.123</td>
</tr>
<tr>
<td>Standard 5</td>
<td>62.5</td>
<td>0.066</td>
</tr>
<tr>
<td>Standard 6</td>
<td>31.25</td>
<td>0.037</td>
</tr>
</tbody>
</table>
16. **TYPICAL SAMPLE VALUES**

SENSITIVITY –

The sensitivity of the Anti-Human HSP70 (total) ELISA was determined to be 6.79ng/mL.

PRECISION –

Intra-Assay Precision (Within Run Precision)

To determine Intra-Assay Precision, samples containing low, medium and high concentrations of anti-human HSP70 were assayed sixteen times on one plate. The Intra-Assay coefficient of variation of the Anti-Human HSP70 (total) ELISA was determined to be <10%.

Inter-Assay Precision (Between Run Precision)

To determine Inter-Assay Precision, three samples containing low, medium and high concentrations of anti-human HSP70 were assayed in eight individual assays. The Inter-Assay coefficient of variation of the Anti-Human HSP70 (total) ELISA was determined to be <10%.

LINEARITY –

To determine linearity, a sample containing 792.0 ng/mL of antihuman HSP70 was diluted 1:2 in Sample Diluent 2 four times and measured in the assay. The data was plotted graphically as actual anti-human HSP70 concentration versus measured anti-human HSP70 concentration. The line obtained had a slope of 1.071 and a correlation coefficient of 0.9998.
17. ASSAY SPECIFICITY

CROSS REACTIVITY –

The anti-HSP70 IgG/A/M EIA detects Human anti-HSP70 IgG/A/M. The cross reactivity with other species as not been tested.
18. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standards dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; change to overnight standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td>Samples give higher value than the highest standard</td>
<td>Starting sample concentration is too high.</td>
<td>Dilute the specimens and repeat the assay</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the kit</td>
<td>Store the all components as directed.</td>
</tr>
</tbody>
</table>
19. **NOTES**
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 400 921 0189 / +86 21 2070 0500

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940
www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2017 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.