ab137982
Human IgM ELISA Kit

For the quantitative measurement of human IgM in plasma, serum, urine, saliva, milk, CSF and cell culture supernatants.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview ... 1
2. Protocol Summary 2
3. Precautions ... 3
4. Storage and Stability 3
5. Limitations .. 4
6. Materials Supplied 4
7. Materials Required, Not Supplied 5
8. Technical Hints 6
9. Reagent Preparation 7
10. Standard Preparation 10
11. Sample Preparation 12
12. Plate Preparation 14
13. Assay Procedure 15
14. Typical Data 17
15. Typical Sample Values 18
16. Assay Specificity 19
17. Species Reactivity 19
18. Troubleshooting 20
19. Notes .. 22

Technical Support 26
1. Overview

Human IgM *in vitro* ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of IgM in plasma, serum, urine, saliva, milk, CSF and cell culture supernatants.

An IgM specific antibody has been pre-coated onto 96-well plates and blocked. Standards or test samples are added to the wells and subsequently an IgM specific biotinylated detection antibody is added and then followed by washing with wash buffer. Streptavidin-Peroxidase Conjugate is added and unbound conjugates are washed away with wash buffer. TMB is then used to visualize Streptavidin-Peroxidase enzymatic reaction. TMB is catalyzed by Streptavidin-Peroxidase to produce a blue color product that changes into yellow after adding acidic stop solution. The density of yellow coloration is directly proportional to the amount of IgM captured in plate.

Human Immunoglobulin M (IgM) is a large mushroom-shaped antibody against A and B antigens on red blood cells and is produced by B cells. It forms a pentamer or a hexamer in serum and also a monomer on B cell surface. Each of the five monomers has a molecular mass of 180 kDa, consists of two light and two heavy chains, and a joining J chain required for the synthesis of the pentamer. Upon an exposure to an acute infection, IgM is the predominant antibody produced to fight the foreign red blood cell antigen. It activates complement and agglutinates red blood cells. IgM is the first immunoglobulin made by the fetus and by B cells when stimulated by antigens. It does not pass across the Human placenta due to its large size. Elevated IgM indicates viral hepatitis infection and primary biliary cirrhosis. IgM is a useful tool in the diagnosis of infectious diseases.
2. Protocol Summary

Prepare all reagents, samples, and standards as instructed

↓

Add standard or sample to appropriate wells.
Incubate at room temperature.

↓

Wash and add prepared biotin antibody to appropriate wells.
Incubate at room temperature.

↓

Wash and add prepared Streptavidin-Peroxidase Conjugate. Incubate at room temperature.

↓

Add Chromogen Substrate to each well. Incubate at room temperature

↓

Add Stop Solution to each well. Read immediately.
3. Precautions

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.
- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.
- Reagents should be treated as possible mutagens and should be handled with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.
- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipet by mouth. Do not eat, drink or smoke in the laboratory areas.
- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. Storage and Stability

Store kit at +4°C immediately upon receipt, apart from the SP Conjugate & Biotinylated Antibody, which should be stored at -20°C. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Materials Supplied section.
5. Limitations

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

6. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgM Microplate (12 x 8 wells)</td>
<td>96 wells</td>
<td>4°C</td>
</tr>
<tr>
<td>IgM Standard</td>
<td>1 vial</td>
<td>4°C</td>
</tr>
<tr>
<td>10X Diluent N Concentrate</td>
<td>30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Biotinylated human IgM antibody</td>
<td>1 vial</td>
<td>-20°C</td>
</tr>
<tr>
<td>100X Streptavidin-Peroxidase Conjugate (SP Conjugate)</td>
<td>80 µL</td>
<td>-20°C</td>
</tr>
<tr>
<td>Chromogen Substrate</td>
<td>8 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>20X Wash Buffer Concentrate</td>
<td>2 x 30 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Sealing Tapes</td>
<td>3</td>
<td>N/A</td>
</tr>
</tbody>
</table>
7. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Microplate reader capable of measuring absorbance at 450 nm.
- Precision pipettes to deliver 1 µL to 1 mL volumes.
- Adjustable 1-25 mL pipettes for reagent preparation.
- 100 mL and 1 liter graduated cylinders.
- Absorbent paper.
- Distilled or deionized water.
- Log-log graph paper or computer and software for ELISA data analysis.
- 6 tubes to prepare standard or sample dilutions.
8. Technical Hints

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
- Selected components in this kit are supplied in surplus amount to account for additional dilutions, evaporation, or instrumentation settings where higher volumes are required. They should be disposed of in accordance with established safety procedures.
- Make sure all buffers and solutions are at room temperature before starting the experiment.
- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Make sure you have the right type of plate for your detection method of choice.
- Make sure the heat block/water bath and microplate reader are switched on before starting the experiment.
9. Reagent Preparation

- Equilibrate all reagents to room temperature (18-25°C) prior to use.
- Prepare fresh reagents immediately prior to use.
- If crystals have formed in the concentrate, mix gently until the crystals have completely dissolved.

9.1 1X Diluent N
Dilute the 10X Diluent N Concentrate 1:10 with reagent grade water. Mix gently and thoroughly.

\[\text{\(\Delta \) Note: Store for up to 1 month at 4°C.} \]

9.2 1X Wash Buffer
Dilute the 20X Wash Buffer Concentrate 1:20 with reagent grade water. Mix gently and thoroughly.

9.3 1X Biotinylated IgM Detector antibody
9.3.1 The stock Biotinylated IgM Antibody must be diluted with 1X Diluent N according to the label concentration to prepare 1X Biotinylated IgM Antibody for use in the assay procedure. Observe the label for the “X” concentration on the vial of Biotinylated IgM Antibody.

9.3.2 Calculate the necessary amount of 1X Diluent N to dilute the Biotinylated IgM Antibody to prepare a 1X Biotinylated IgM Antibody solution for use in the assay procedure according to how many wells you wish to use and the following calculation:

<table>
<thead>
<tr>
<th>Number of Wells Strips</th>
<th>Number of Wells</th>
<th>((V_1)) Total Volume of 1X Biotinylated Antibody (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>32</td>
<td>1,760</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>2,640</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>3,520</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>4,400</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>5,280</td>
</tr>
</tbody>
</table>

\[\text{\(\Delta \) Note: Any remaining solution should be frozen at -20°C.} \]
Where:

$C_S =$ Starting concentration (X) of stock Biotinylated IgM Antibody (variable)

$C_F =$ Final concentration (always = 1X) of 1X Biotinylated IgM Antibody solution for the assay procedure

$V_T =$ Total required volume of 1X Biotinylated IgM Antibody solution for the assay procedure

$V_A =$ Total volume of (X) stock Biotinylated IgM Antibody

$V_D =$ Total volume of 1X Diluent N required to dilute (X) stock Biotinylated IgM Antibody to prepare 1X Biotinylated IgM solution for assay procedures

Calculate the volume of (X) stock Biotinylated Antibody required for the given number of desired wells:

$$\left(\frac{C_F}{C_S}\right) \times V_T = V_A$$

Calculate the final volume of 1X Diluent N required to prepare the 1X Biotinylated IgM Antibody:

$$V_T - V_A = V_D$$

Example:

Δ Note: This example is for demonstration purposes only. Please remember to check your antibody vial for the actual concentration of antibody provided.

$C_S =$ 50X Biotinylated IgM Antibody stock

$C_F =$ 1X Biotinylated IgM Antibody solution for use in the assay procedure

$V_T =$ 3,520 µL (8 well strips or 64 wells)

$$\left(1X/50X\right) \times 3,520 \mu L = 70.4 \mu L$$

$$3,520 \mu L - 70.4 \mu L = 3,449.6 \mu L$$

$V_A =$ 70.4 µL total volume of (X) stock Biotinylated IgM Antibody required

$V_D =$ 3,449.6 µL total volume of 1X Diluent N required to dilute the 50X stock Biotinylated Antibody to prepare 1X Biotinylated IgM Antibody solution for assay procedures
9. First spin the Biotinylated IgM Antibody vial to collect the contents at the bottom.

9.3.4 Add calculated amount V_A of stock Biotinylated IgM Antibody to the calculated amount V_D of 1X Diluent N. Mix gently and thoroughly.

9.4 1X SP Conjugate
Spin down the 100X Streptavidin-Peroxidase Conjugate (SP Conjugate) briefly and dilute the desired amount of the conjugate 1:100 with 1X Diluent N.

△ Note: Any remaining solution should be frozen at -20°C.
10. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Prepare serially diluted standards immediately prior to use.
- Any remaining standard should be stored at -20°C after reconstitution and used within 30 days.
- The following section describes the preparation of a standard curve for duplicate measurements (recommended).

10.1 Reconstitute the IgM Standard vial to generate a 100 ng/mL IgM Standard #1.

10.1.1 First consult the IgM Standard vial to determine the mass of protein in the vial.

10.1.2 Calculate the appropriate volume of 1X Diluent N to add when resuspending the IgM Standard vial to produce a 100 ng/mL IgM Standard #1 by using the following equation:

\[
C_S = \text{Starting mass of IgM Standard (see vial label) (ng)}
\]

\[
C_F = \text{The 100 ng/mL IgM Standard #1 final required concentration}
\]

\[
V_D = \text{Required volume of 1X Diluent N for reconstitution (μL)}
\]

Calculate total required volume 1X Diluent N for resuspension:

\[
(C_S / C_F) \times 1,000 = V_D
\]

Example:

△ Note: This example is for demonstration purposes only. Please remember to check your standard vial for the actual amount of standard provided.

\[
C_S = 500 \text{ ng of IgM Standard in vial}
\]

\[
C_F = 100 \text{ ng/mL IgM Standard #1 final concentration}
\]

\[
V_D = \text{Required volume of 1X Diluent N for reconstitution}
\]

\[
(500 \text{ ng} / 100 \text{ ng/mL}) \times 1,000 = 5,000 \mu\text{L}
\]
10.1.3 First briefly centrifuge the IgM Standard Vial to collect the contents on the bottom of the tube.

10.1.4 Reconstitute the IgM Standard vial by adding the appropriate calculated amount V_D of 1X Diluent N to the vial to generate the 100 ng/mL IgM Standard #1. Mix gently and thoroughly.

10.2 Allow the reconstituted 100 ng/mL IgM Standard #1 to sit for 10 minutes with gentle agitation prior to making subsequent dilutions.

10.3 Label seven tubes #2 – 8.

10.4 Prepare the 50 ng/mL IgM Standard #2 by adding 120 µL of the reconstituted 100 ng/mL IgM Standard #1 to 120 µL of 1X Diluent N and mix thoroughly and gently.

10.5 Add 120 µL of 1X Diluent N to tube #3 – 8.

10.6 To prepare Standard #3, add 120 µL of the Standard #2 into tube #2 and mix gently.

10.7 To prepare Standard #4, add 120 µL of the Standard #3 into tube #3 and mix gently.

10.8 Using the table below as a guide, prepare subsequent serial dilutions.

10.9 1X Diluent N serves as the zero standard (0 mg/mL).

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume to dilute (µL)</th>
<th>Volume Diluent N (µL)</th>
<th>Human IgM (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Step 10.1</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>120 µL Standard #1</td>
<td>120</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>120 µL Standard #2</td>
<td>120</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>120 µL Standard #3</td>
<td>120</td>
<td>12.5</td>
</tr>
<tr>
<td>5</td>
<td>120 µL Standard #4</td>
<td>120</td>
<td>6.25</td>
</tr>
<tr>
<td>6</td>
<td>120 µL Standard #5</td>
<td>120</td>
<td>3.125</td>
</tr>
<tr>
<td>7</td>
<td>120 µL Standard #6</td>
<td>120</td>
<td>1.563</td>
</tr>
<tr>
<td>8 (Blank)</td>
<td>N/A</td>
<td>120</td>
<td>0</td>
</tr>
</tbody>
</table>

ab137982 Human IgM ELISA Kit
11. Sample Preparation

11.1 Urine:
Collect urine using sample pot. Centrifuge samples at 800 x g for 10 minutes. Dilute urine 1:4 with 1X Diluent N and assay. Depending on application needs, the user should determine proper dilutions. If necessary, dilute samples within the range of 1:2 to 1:20. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.2 Saliva:
Collect saliva using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute 1:200 with 1X Diluent N and assay. Depending on application needs, the user should determine proper dilutions. If necessary, dilute samples within the range of 1:100 to 1:400. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.3 Milk:
Collect milk using sample tube. Centrifuge samples at 800 x g for 10 minutes. Dilute milk 1:2,000 with 1X Diluent N and assay. If necessary, dilute samples within the range of 1:1,000 to 1:4,000. Depending on application needs, the user should determine proper dilutions. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.4 Plasma:
Collect plasma using one-tenth volume of 0.1 M sodium citrate as an anticoagulant. Centrifuge samples at 3,000 x g for 10 minutes. Dilute samples 1:60,000 into 1X Diluent N and assay. If necessary, dilute samples within the range of 1:30,000 to 1:120,000. Depending on application needs, the user should determine proper dilutions. The undiluted samples can be stored at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles. (EDTA or Heparin can also be used as an anticoagulant).

11.5 Serum:
Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 3,000 x g for 10 minutes and remove serum. Dilute samples 1:60,000 into 1X Diluent N and assay. If necessary dilute samples within the range of 1:30,000 to 1:120,000. Depending on application needs, the user should determine proper dilutions. The undiluted samples can be stored
at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.6 Cell Culture Supernatants:
Centrifuge cell culture media at 3,000 x g for 10 minutes at 4°C to remove debris. Collect supernatants and assay. Store samples at -80°C or below. Avoid repeated freeze-thaw cycles.

11.7 Cerebrospinal Fluid:
Collect CSF using sample pot. Centrifuge samples at 3,000 x g for 10 minutes. Dilute samples 1:200 into 1X Diluent N or within the range of 1:50 to 1:800, and assay. Depending on application needs, the user should determine proper dilutions. The undiluted samples can be stored at -80°C for up to 3 months. Avoid repeated freeze-thaw cycles.

Refer to Dilution Guidelines for further instruction.

<table>
<thead>
<tr>
<th>Guidelines for Dilutions of 100-fold or Greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>(for reference only; please follow the insert for specific dilution suggested)</td>
</tr>
<tr>
<td>100x</td>
</tr>
<tr>
<td>4 µl sample + 396 µl buffer (100X)</td>
</tr>
<tr>
<td>Assuming the needed volume is less than or equal to 400 µl</td>
</tr>
</tbody>
</table>

| 10000x |
| A) 4 µl sample + 396 µl buffer (100X) |
| B) 4 µl of A + 396 µl buffer (100X) |
| Assuming the needed volume is less than or equal to 400 µl |

| 1000x |
| A) 4 µl sample + 396 µl buffer (100X) |
| B) 24 µl of A + 216 µl buffer (10X) |
| Assuming the needed volume is less than or equal to 240 µl |

| 100000x |
| A) 4 µl sample + 396 µl buffer (100X) |
| B) 4 µl of A + 396 µl buffer (100X) |
| C) 24 µl of A + 216 µl buffer (10X) |
| Assuming the needed volume is less than or equal to 240 µl |
12. Plate Preparation

— The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.

— Unused well plate strips should be returned to the plate packet and stored at 4°C.

— For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

— Well effects have not been observed with this assay.
13. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections. The assay is performed at room temperature (20-25°C).

13.2 Remove excess microplate strips from the plate frame and return them immediately to the foil pouch with desiccant inside. Reseal the pouch securely to minimize exposure to water vapor and store in a vacuum desiccator.

13.3 Add 50 μL of IgM Standard or sample to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for two hours. Start the timer after the last sample addition.

13.4 Wash five times with 200 μL of 1X Wash Buffer manually. Invert the plate each time and decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid. If using a machine, wash six times with 300 μL of 1X Wash Buffer and then invert the plate, decant the contents; tap it 4-5 times on absorbent paper towel to completely remove the liquid.

13.5 Add 50 μL of 1X Biotinylated IgM Antibody to each well and incubate for one hour.

13.6 Wash microplate as described above.

13.7 Add 50 μL of 1X SP Conjugate to each well. Gently tap plate to thoroughly coat the wells. Break any bubbles that may have formed. Cover wells with a sealing tape and incubate for 30 minutes. Turn on the microplate reader and set up the program in advance.

13.8 Wash microplate as described above.

13.9 Add 50 μL of Chromogen Substrate to each well. Gently tap plate thoroughly coat the wells. Break any bubbles that may have formed. Incubate for 25 minutes or till the optimal blue color density develops.

13.10 Add 50 μL of Stop Solution to each well. The color will change from blue to yellow. Gently tap plate to ensure thorough mixing. Break any bubbles that may have formed.
13.11 Read the absorbance on a microplate reader at a wavelength of 450 nm immediately. If wavelength correction is available, subtract readings at 570 nm from those at 450 nm to correct optical imperfections. Otherwise, read the plate at 450 nm only. Please note that some unstable black particles may be generated at high concentration points after stopping the reaction for about 10 minutes, which will reduce the readings.

13.12 Analyze the data as described below.

13.12.1 Calculate the mean value of the duplicate or triplicate readings for each standard and sample.

13.12.2 To generate a standard curve, plot the graph using the standard concentrations on the x-axis and the corresponding mean 450 nm absorbance (OD) on the y-axis. The best-fit line can be determined by regression analysis using log-log or four-parameter logistic curve-fit.

13.12.3 Determine the unknown sample concentration from the Standard Curve and multiply the value by the dilution factor.
14. Typical Data

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

Figure 1. Example of IgM standard curve. The standard curve was prepared as described in Section 10. Raw data values are shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
15. Typical Sample Values

SENSITIVITY –
The minimum detectable dose (MDD) of IgM as calculated by 2 standard deviations from the mean of a zero standard was established to be ~0.43 ng/ml.

RECOVERY –
Standard Added Value: 6.25 – 50 ng/mL
Recovery: 91 – 112 %
Average Recovery: 98 %

PRECISION –

<table>
<thead>
<tr>
<th></th>
<th>Intra-assay Precision</th>
<th>Inter-Assay Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV (%)</td>
<td>4.5</td>
<td>9.8</td>
</tr>
</tbody>
</table>

LINEARITY OF DILUTION -
Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.

Plasma and serum samples were serially-diluted to test for linearity.

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Plasma</th>
<th>Serum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30000</td>
<td>89</td>
<td>94</td>
</tr>
<tr>
<td>1:60000</td>
<td>101</td>
<td>99</td>
</tr>
<tr>
<td>1:120000</td>
<td>105</td>
<td>104</td>
</tr>
</tbody>
</table>
16. Assay Specificity

This kit recognizes IgM in plasma, serum, urine, saliva, milk, CSF and cell culture supernatants.
No significant cross-reactivity observed with IgA, IgA1, IgA2, IgE, IgG2, and IgJ.

REFERENCE VALUES
Normal human IgM plasma levels range from 0.4 – 2.3 mg/mL.

17. Species Reactivity

<table>
<thead>
<tr>
<th>Species</th>
<th>% Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canine</td>
<td>None</td>
</tr>
<tr>
<td>Mouse</td>
<td>None</td>
</tr>
<tr>
<td>Monkey</td>
<td>< 5</td>
</tr>
<tr>
<td>Bovine</td>
<td>None</td>
</tr>
<tr>
<td>Rat</td>
<td>None</td>
</tr>
<tr>
<td>Swine</td>
<td>None</td>
</tr>
<tr>
<td>Rabbit</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Immunoglobulins</th>
<th>% Cross Reactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG1</td>
<td>1</td>
</tr>
<tr>
<td>IgG3</td>
<td>1</td>
</tr>
<tr>
<td>IgG4</td>
<td>1</td>
</tr>
<tr>
<td>IgD</td>
<td>2</td>
</tr>
</tbody>
</table>

Please contact our Technical Support team for more information.
18. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Improper standard dilution</td>
<td>Confirm dilutions made correctly</td>
</tr>
<tr>
<td></td>
<td>Standard improperly reconstituted (if applicable)</td>
<td>Briefly spin vial before opening; thoroughly resuspend powder (if applicable)</td>
</tr>
<tr>
<td></td>
<td>Standard degraded</td>
<td>Store sample as recommended</td>
</tr>
<tr>
<td></td>
<td>Curve doesn't fit scale</td>
<td>Try plotting using different scale</td>
</tr>
<tr>
<td>Low signal</td>
<td>Incubation time too short</td>
<td>Try overnight incubation at 4°C</td>
</tr>
<tr>
<td></td>
<td>Target present below detection limits of assay</td>
<td>Decrease dilution factor; concentrate samples</td>
</tr>
<tr>
<td></td>
<td>Precipitate can form in wells upon substrate addition when concentration of target is too high</td>
<td>Increase dilution factor of sample</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
<tr>
<td></td>
<td>Sample prepared incorrectly</td>
<td>Ensure proper sample preparation/dilution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Bubbles in wells</td>
<td>Ensure no bubbles present prior to reading plate</td>
</tr>
<tr>
<td></td>
<td>All wells not washed equally/thoroughly</td>
<td>Check that all ports of plate washer are unobstructed wash wells as recommended</td>
</tr>
<tr>
<td></td>
<td>Incomplete reagent mixing</td>
<td>Ensure all reagents/master mixes are mixed thoroughly</td>
</tr>
<tr>
<td></td>
<td>Inconsistent pipetting</td>
<td>Use calibrated pipettes and ensure accurate pipetting</td>
</tr>
<tr>
<td></td>
<td>Inconsistent sample preparation or storage</td>
<td>Ensure consistent sample preparation and optimal sample storage conditions (eg. minimize freeze/thaws cycles)</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>High background/ Low sensitivity</td>
<td>Wells are insufficiently washed</td>
<td>Wash wells as per protocol recommendations</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Make fresh wash buffer</td>
</tr>
<tr>
<td></td>
<td>Waiting too long to read plate after adding STOP solution</td>
<td>Read plate immediately after adding STOP solution</td>
</tr>
<tr>
<td></td>
<td>Improper storage of ELISA kit</td>
<td>Store all reagents as recommended. Please note all reagents may not have identical storage requirements.</td>
</tr>
<tr>
<td></td>
<td>Using incompatible sample type (e.g. Serum vs. cell extract)</td>
<td>Detection may be reduced or absent in untested sample types</td>
</tr>
</tbody>
</table>
19. Notes
Technical Support

Copyright © 2018 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

Austria
wissenschaftlicherdienst@abcam.com | 019-288-259
France
supportscientifique@abcam.com | 01.46.94.62.96
Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154
Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com
UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
c.ca.technical@abcam.com | 877-749-8807
US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823
China
cn.technical@abcam.com | +86-21-5110-5938 | 400-628-6880
Japan
t.technical@abcam.co.jp | +81-(0)3-6231-0940
Singapore
sg.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450
New Zealand
nz.technical@abcam.com | +64-(0)9-909-7829