ab139447

MMP2 Inhibitor
Screening Assay Kit
(Fluorometric)

Instructions for Use

For the screening of MMP2 inhibitors

This product is for research use only and is not intended for diagnostic use.

Version 1 Last Updated 10 May 2013
Table of Contents

1. Background 3

2. Principle of the Assay 3

3. Protocol Summary 4

4. Materials Supplied 5

5. Storage and Stability 6

6. Materials Required, Not Supplied 7

7. Assay Protocol 8

8. Data Analysis 12
1. Background

Matrix metalloproteinase-2 (MMP2, gelatinase A, 72 kDa type IV collagenase) is a member of the MMP family of extracellular proteases. These enzymes play a role in many normal and disease states by virtue of their broad substrate specificities. Targets of MMP2 include native and denatured collagens, fibronectin, elastin, laminin-5, pro-TNF-α, and neurocan1-5. MMP2 is secreted as a 72 kDa proenzyme (as measured by SDS-PAGE), and activated by cleavage to 62 and 59 kDa. MMP2 is an important target for inhibitor screening due to its involvement in diseases such as atherosclerosis, and cancer growth, angiogenesis, and metastasis.

2. Principle of the Assay

Abcam MMP2 Inhibitor Screening Assay Kit (Fluorometric) (ab139447) is a complete assay system designed to screen MMP2 inhibitors using a quenched fluorogenic peptide: MMP Fluorogenic Substrate Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH₂ [Mca=(7-methoxycoumarin-4-yl)-acetyl; Dpa=N-3-(2,4-dinitrophenyl)-L-α-β-diaminopropionyl]. Mca fluorescence is quenched by the Dpa group until cleavage by MMPs at the Gly-Leu bond separates the two moieties. The assays are performed in a convenient 96-well microplate format. The kit is useful to screen inhibitors of MMP2, a potential therapeutic target. The compound NNGH is also included as a prototypic control inhibitor.
3. Protocol Summary

Bring MMP Substrate and Inhibitor to room temperature

Dilute MMP Substrate, Inhibitor and Enzyme and bring to reaction temperature (37°C)

Add MMP Substrate and Inhibitor to appropriate wells. Bring to reaction temperature (37°C)

Add MMP Enzyme to appropriate wells.

Add MMP Inhibitor and test inhibitor to appropriate wells. Incubate for 30-60 minutes at reaction temperature (37°C)

Start reaction by adding MMP Substrate to each well

Read plates using Ex/Em=328/420 at 1 minute intervals for 10 minutes

Perform data analysis
4. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>96-well Clear Microplate (1/2 Volume)</td>
<td>1</td>
<td>4°C</td>
</tr>
<tr>
<td>MMP2 Enzyme (Human, Recombinant) (3.28 U/µL)</td>
<td>1 x 45.7 µL</td>
<td>-80°C</td>
</tr>
<tr>
<td>MMP Inhibitor (1.3 mM NNGH in DMSO)</td>
<td>1 x 50 µL</td>
<td>-80°C</td>
</tr>
<tr>
<td>MMP Fluorogenic Substrate (400 µM (437 µg/ml) in DMSO)</td>
<td>1 x 200 µL</td>
<td>-80°C</td>
</tr>
<tr>
<td>MMP Calibration Standard (40 µM (17.8 µg/ml) in DMSO)</td>
<td>1 x 50 µL</td>
<td>-80°C</td>
</tr>
<tr>
<td>Fluorometric Assay Buffer</td>
<td>1 x 20 mL</td>
<td>4°C</td>
</tr>
</tbody>
</table>
5. Storage and Stability

- Store all components except the microplate and assay buffer (4°C) at -80°C for the highest stability.

- The MMP2 Enzyme should be handled carefully in order to retain maximal enzymatic activity. It is stable, in diluted or concentrated form, for several hours on ice.

- As supplied, MMP2 Enzyme is stable for 5 freeze/thaw cycles. To minimize the number of freeze/thaw cycles, aliquot the MMP2 into separate tubes and store at -80°C.

- When setting up the assay, do not maintain diluted components at reaction temperature (e.g. 37°C) for an extended period of time prior to running the assay.

- One unit is defined as the amount of enzyme that will hydrolyze 100 µM thiopeptide Ac-PLG-[2-mercapto-4-methyl-pentanoyl]-LG-OC\textsubscript{2}H\textsubscript{5} at 100 pmol/min@ 37°C.
6. Materials Required, Not Supplied

- Fluorescent microplate reader capable of excitation at 328 nm and emission at 420 nm. The following Ex/Em have also been used: 320, 340/393, 400, 405

- Pipettes or multi-channel pipettes capable of pipetting 1-100 µL accurately.
 (Note: reagents can be diluted to increase the minimal pipetting volume to >10 µL)

- Ice bucket to keep reagents cold until use

- Water bath or incubator for component temperature equilibration

- Orbital shaker
7. Assay Protocol

1. Briefly warm kit components MMP Fluorogenic Substrate, MMP Calibration Standard and MMP Inhibitor to RT to thaw DMSO.

2. Dilute MMP inhibitor 1/200 in Assay Buffer as follows. Add 1 µL MMP Inhibitor into 200 µL Assay Buffer, in a separate tube. Warm to reaction temperature (e.g. 37°C).

3. Dilute the MMP Substrate to 40 µM in Fluorometric Assay Buffer. Dilute sufficient to provide 10 µL per well. Warm to reaction temperature (e.g. 37°C).

4. Dilute MMP2 Enzyme 1/56 in Fluorometric Assay Buffer to required total volume (20 µL are needed per well). Warm to reaction temperature (e.g. 37°C) shortly before assay.

5. Pipette Assay Buffer into each desired well of the 1/2 volume microplate as follows:
 - Calibration = 80 µL Assay Buffer in 3 wells (see step 11)
 - Control (no inhibitor) = 70 µL Assay Buffer
 - MMP Inhibitor = 50 µL Assay Buffer
 - Test inhibitor = varies (see Table 1, below)

6. Allow microplate to equilibrate to assay temperature (e.g. 37°C).
7. Add 20 µL MMP2 Enzyme (diluted in step 4) to the control, MMP inhibitor, and test inhibitor wells. Final amount of MMP2 will be 1.16 U per well (11.6mU/µL). Remember to not add MMP2 Enzyme to the calibration wells!

8. Add 20 µL MMP Inhibitor (diluted in step 2) to the MMP Inhibitor wells only. Final inhibitor concentration = 1.3 µM. Note: 1.3 µM NNGH will inhibit MMP2 by 94% under these conditions (see Figure 1).

9. Add desired volume of test inhibitor to appropriate wells. See Table 1, below.

10. Incubate plate for 30-60 minutes at reaction temperature (e.g. 37°C) to allow inhibitor/enzyme interaction.

11. In the meantime, calibrate the fluorescent microplate reader, using Ex/Em=328/420: Prewarm assay buffer to reaction temperature in 3 wells in the microplate, then to each add 10 µL MMP substrate to give the concentration to be used in the assay (e.g., for 4 µM final add 10 µL 40 µM) and mix. When the fluorescent signal is constant, use this reading as the zero (Blank) value in arbitrary fluorescence units (RFUs). Using the same wells, with their mixtures of substrate peptide and buffer, add 10 µL MMP Calibration Standard peptide to give 3 different final molar concentrations ranging between 2 and 10% of the substrate peptide molar concentration (e.g. 80, 200, and 400 nM) and measure their fluorescence. Use these values to build a standard curve relating micromolar MMP Calibration Standard
concentration (x axis) to RFUs (y axis). The slope of the line is the conversion factor (CF). If multiple concentrations of substrate peptide are used, such as in kinetic determinations, step 11 must be performed for each concentration, due to absorptive quenching by the substrate peptide. Note: this calibration can be done at any time.

12. Start reactions by the addition of 10 µL MMP Fluorogenic substrate (diluted and equilibrated to reaction temperature in step 3). Final substrate concentration = 4 µM.

13. Continuously read plates in the fluorescent microplate reader, using Ex/Em=328/420. For example, record data at 1 minute time intervals for 10 minutes.

14. Perform data analysis (see below).

 NOTE: Retain microplate for future use of unused wells.
Table 1. Example of Samples

<table>
<thead>
<tr>
<th>Sample</th>
<th>Assay Buffer (µL)</th>
<th>MMP2 (58 mU/µL)</th>
<th>Inhibitor (6.5 µM)</th>
<th>Substrate (40 µM)</th>
<th>Total Volume (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>70 µL</td>
<td>20 µL</td>
<td>0</td>
<td>10 µL</td>
<td>100 µL</td>
</tr>
<tr>
<td>MMP Inhibitor</td>
<td>50 µL</td>
<td>20 µL</td>
<td>20 µL</td>
<td>10 µL</td>
<td>100 µL</td>
</tr>
<tr>
<td>Test inhibitor*</td>
<td>X µL</td>
<td>20 µL</td>
<td>Y µL</td>
<td>10 µL</td>
<td>100 µL</td>
</tr>
</tbody>
</table>

* Test inhibitor is the experimental inhibitor. Dissolve/dilute inhibitor into assay buffer and add to appropriate wells at desired volume “Y”. Adjust volume “X” to bring the total volume to 100 µL.

Example of plate:

<table>
<thead>
<tr>
<th>Well #</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Calibration</td>
</tr>
<tr>
<td>B1</td>
<td>Calibration</td>
</tr>
<tr>
<td>C1</td>
<td>Calibration</td>
</tr>
<tr>
<td>D1</td>
<td>Control</td>
</tr>
<tr>
<td>E1</td>
<td>Control</td>
</tr>
<tr>
<td>F1</td>
<td>MMP Inhibitor</td>
</tr>
<tr>
<td>G1</td>
<td>MMP Inhibitor</td>
</tr>
<tr>
<td>H1</td>
<td>Test inhibitor</td>
</tr>
<tr>
<td>A2…</td>
<td>Test inhibitor…</td>
</tr>
</tbody>
</table>
8. Data Analysis

1. Plot data as RFUs (minus Blank RFU value determined during calibration, step 11) versus time for each sample.

2. Determine the range of initial time points during which the reaction is linear.

3. Obtain the initial reaction velocity (V) in RFUs/min: determine the slope of a line fit to the initial linear portion of the data plot using an appropriate routine.

4. It is best to use a range of inhibitor concentrations, each in duplicate. Average the slopes of duplicate samples.

A. To determine inhibitor % remaining activity:

Inhibitor % activity remaining = ($V_{inhibitor}/V_{control}$) x 100

See Figure 1 for example.
B. To determine the activity of the samples expressed as picomoles substrate hydrolyzed per minute:

Employ the following equation:

$$X \text{ pmoles substrate/min} = \frac{1}{\text{CF}} \times V \times \text{vol}$$

Where

- \textbf{CF} is the conversion factor (micromolar concentration/RFUs)
- \textbf{V} is initial reaction velocity (RFUs/min)
- \textbf{vol.} is the reaction volume in microliters (100)