ab157715
Hemoglobin Mouse ELISA Kit

For the quantitative measurement of Hemoglobin in Mouse serum, plasma and other biological samples.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview
2. Protocol Summary
3. Precautions
4. Storage and Stability
5. Limitations
6. Materials Supplied
7. Materials Required, Not Supplied
8. Technical Hints
9. Reagent Preparation
10. Standard Preparation
11. Sample Collection and Storage
12. Sample Preparation
13. Plate Preparation
14. Assay Procedure
15. Calculations
16. Typical Data
17. Typical Sample Values
18. Interferences
19. Troubleshooting
20. Notes
1. Overview

Abcam’s Hemoglobin Mouse ELISA kit is an in vitro enzyme-linked immunosorbent assay (ELISA) for the quantitative measurement of Hemoglobin in biological samples of mice.

In this assay the Hemoglobin present in samples reacts with the anti-Hemoglobin antibodies which have been adsorbed to the surface of polystyrene microtiter wells. After the removal of unbound proteins by washing, anti-Hemoglobin antibodies conjugated with horseradish peroxidase (HRP) are added. These enzyme-labeled antibodies form complexes with the previously bound Hemoglobin. Following another washing step, the amount of enzyme bound in complex is measured by the addition of a chromogenic substrate, 3,3',5,5'-tetramethylbenzidine (TMB). The quantity of bound enzyme varies proportionately with the concentration of Hemoglobin in the sample tested; thus, the absorbance at 450 nm, is a measure of the concentration of Hemoglobin in the test sample. The quantity of Hemoglobin in the test sample can be interpolated from the standard curve constructed from the standards, and corrected for sample dilution.
2. Protocol Summary

Remove appropriate number of antibody coated well strips.

↓

Equilibrate all reagents to room temperature.

↓

Prepare all the reagents, samples, and standards as instructed.

↓

Add standard or sample to each well used. Incubate at room temperature.

↓

Aspirate and wash each well. Add prepared HRP labeled secondary detector antibody. Incubate at room temperature.

↓

Aspirate and wash each well. Add Chromogen Substrate Solution to each well.

↓

Immediately begin recording the color development.
3. Precautions

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.
- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.
- Reagents should be treated as possible mutagens and should be handled with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.
- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipet by mouth. Do not eat, drink or smoke in the laboratory areas.
- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. Storage and Stability

Store kit at +4°C immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Materials Supplied section.
5. Limitations

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

6. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mouse Hemoglobin ELISA Microplate</td>
<td>96 wells</td>
<td>4°C</td>
</tr>
<tr>
<td>Mouse Hemoglobin Calibrator (lyophilized)</td>
<td>1 vial</td>
<td>4°C</td>
</tr>
<tr>
<td>5X Diluent Concentrate</td>
<td>50 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>20X Wash Buffer Concentrate</td>
<td>50 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Enzyme-Antibody Conjugate</td>
<td>150 µL</td>
<td>4°C</td>
</tr>
<tr>
<td>Chromogen Substrate Solution</td>
<td>12 mL</td>
<td>4°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>4°C</td>
</tr>
</tbody>
</table>
7. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Precision pipette (2 µL to 200 µL) for making and dispensing dilutions
- Test tubes
- Microtitre washer/aspirator
- Distilled or Deionized H2O
- Microtitre Plate reader
- Assorted glassware for the preparation of reagents and buffer solutions
- Timer
8. Technical Hints

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers
- Avoid foaming or bubbles when mixing or reconstituting components
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions
- Ensure plates are properly sealed or covered during incubation steps
- Complete removal of all solutions and buffers during wash steps
9. Reagent Preparation

- Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells.
- Prepare only as much reagent as is needed on the day of the experiment.

9.1 1X Diluent Solution

The diluent solution is supplied as 5X Diluent Concentrate and must be diluted 1/5 with distilled or deionized water (1 part buffer concentrate, 4 parts dH₂O). The 1X Diluent Solution is stable for at least one week from the date of preparation and should be stored at 4°C.

9.2 1X Wash Buffer

The wash solution is supplied as 20X Concentrate and must be diluted 1/20 with distilled or deionized water (1 part buffer concentrate, 19 parts dH₂O). Crystal formation in the concentrate is not uncommon when storage temperatures are low. Warming of the concentrate to 30 - 35°C before dilution can dissolve crystals. The 1X Wash Buffer is stable for at least one week from the date of preparation and can be stored at room temperature (16 - 25°C) or at 4°C.

9.3 1X Enzyme-Antibody Conjugate

Calculate the required amount of 1X Enzyme-Antibody Conjugate solution for each microtitre plate test strip by adding 10 µL Enzyme-Antibody Conjugate to 990 µL of 1X Diluent for each test strip to be used for testing. Mix uniformly, but gently. Avoid foaming. The working conjugate solution is stable for up to 1 hour when stored in the dark.

9.4 Chromogen Substrate Solution

Ready to use as supplied.

9.5 Stop Solution

Ready to use as supplied.
10. Standard Preparation

Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of standards for every use.

10.1 Add 1.0 mL of distilled or de-ionized water the Mouse Hemoglobin Calibrator and mix gently until dissolved. The reconstituted calibrator should be aliquoted and stored at -20°C if future use is required. Avoid multiple freeze-thaw cycles. The calibrator is provided at the concentration stated on the vial. Mouse Hemoglobin standards need to be prepared immediately prior to use (see chart below). Mix well between each step. Avoid foaming.

10.2 Label tubes numbers 1-6.

10.3 Prepare **Standard #1** by adding the appropriate volume of 1X Diluent Solution (derived below) to tube #1. Add 2 µL of stock Mouse Hemoglobin Calibrator to obtain a concentration at 400 ng/mL.

*Example:

NOTE: This example is for demonstration purposes only. Please remember to check your calibrator vial for the actual concentration of calibrator provided.

\[
C_s = \text{Starting concentration of reconstituted Mouse Hemoglobin Calibrator (variable e.g. 104,400 ng/mL)}
\]

\[
C_f = \text{Final concentration of Mouse Hemoglobin Calibrator for the assay procedure (400 ng/mL)}
\]

\[
V_A = \text{Total volume of stock Mouse Hemoglobin Calibrator to dilute (e.g. 2 µL)}
\]

\[
V_D = \text{Total volume of 1X Diluent Solution required to dilute stock Mouse Hemoglobin Calibrator to prepare Standard #1}
\]

\[
V_T = \text{Total volume of Standard #1}
\]

\[
D_f = \text{Dilution factor}
\]
Calculate the dilution factor (D_F) between stock calibrator and the **Standard #1** final concentration:

$$
\frac{C_s}{C_F} = D_F
$$

$$
\frac{104,400}{400} = 261
$$

Calculate the final volume V_D required to prepare the **Standard #1** at 400 ng/mL

$$
V_A \times D_F = V_T
$$

$$
V_D = V_T - V_A
$$

$$
2 \times 261 = 522 \mu L
$$

$$
V_D = 522 - 2 = 520 \mu L
$$

To tube #1, add 2 µL of Mouse Hemoglobin Calibrator to 520 µL of 1X Diluent Solution to obtain a concentration of 400 ng/mL (**Standard #1**).

10.4 Add 250 µL 1X Diluent Solution into tube numbers 2-6.
10.5 Prepare **Standard #2** by adding 250 µL **Standard #1** to tube #2. Mix thoroughly and gently.
10.6 Prepare **Standard #3** by adding 250 µL from **Standard #2** to #3. Mix thoroughly and gently.
10.7 Using the table below as a guide to prepare further serial dilutions.
10.8 1X Diluent Solution serves as the zero standard (0 ng/mL).
<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume to Dilute (µL)</th>
<th>Diluent (µL)</th>
<th>Total Volume (µL)</th>
<th>Starting Conc. (ng/mL)</th>
<th>Final Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>See step 10.3</td>
<td></td>
<td></td>
<td></td>
<td>400</td>
</tr>
<tr>
<td>2</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>400</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>250</td>
<td>250</td>
<td>500</td>
<td>25</td>
<td>12.5</td>
</tr>
</tbody>
</table>
11. Sample Collection and Storage

11.1 Serum:

Blood should be collected by venipuncture. The serum should be separated from the cells after clot formation by centrifugation.

11.2 Plasma:

For plasma samples, blood should be collected into a container with an anticoagulant and then centrifuged. Care should be taken to minimize hemolysis, excessive hemolysis can impact your results.

Assay immediately or aliquot and store samples at -20°C. Avoid repeated freeze-thaw cycles.

- **Precautions**

 For any sample that might contain pathogens, care must be taken to prevent contact with open wounds.

- **Additives and Preservatives**

 No additives or preservatives are necessary to maintain the integrity of the specimen. Avoid azide contamination.
12. Sample Preparation

General Sample Information:
The assay for quantification of Hemoglobin in samples requires that each test sample be diluted before use. For a single step determination a dilution of 1/4,000 is appropriate for most serum/plasma samples. For absolute quantification, samples that yield results outside the range of the standard curve, a lesser or greater dilution might be required. If unsure of sample level, a serial dilution with one or two representative samples before running the entire plate is highly recommended.

- To prepare a 1/4,000 dilution of sample, transfer 5 µL of sample to 495 µL of 1X diluent. This gives you a 1/100 dilution.
- Next, dilute the 1/100 samples by transferring 10 µL to 390 µL of 1X diluent. You now have a 1/4,000 dilution of your sample.
- Mix thoroughly at each stage.
13. Plate Preparation

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused plate strips should be immediately returned to the foil pouch containing the desiccant pack, resealed and stored at 4°C.
- For each assay performed, a minimum of two wells must be used as the zero control.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Well effects have not been observed with this assay. Contents of each well can be recorded on the template sheet included in the Resources section.
14. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.

14.1 Pipette 100 μL of each standard, including zero control, in duplicate, into pre designated wells.

14.2 Pipette 100 μL of sample (in duplicate) into pre designated wells.

14.3 Incubate the microtiter plate at room temperature for sixty (60 ± 2) minutes. Keep plate covered and level during incubation.

14.4 Following incubation, aspirate the contents of the wells.

14.5 Completely fill each well with appropriately diluted 1X Wash Buffer and aspirate. Repeat three times, for a total of four washes. If washing manually: completely fill wells with wash buffer, invert the plate then pour/shake out the contents in a waste container. Follow this by gently striking the wells on absorbent paper to remove residual buffer. Repeat 3 times for a total of four washes.

14.6 Pipette 100 μL of appropriately 1X Enzyme-Antibody Conjugate to each well. Incubate at room temperature for thirty (30 ± 2) minutes. Keep plate covered in the dark and level during incubation.

14.7 Wash and blot the wells as described in 14.4 - 14.5.

14.8 Pipette 100 μL of TMB Substrate Solution into each well.

14.9 Incubate in the dark at room temperature for precisely ten (10) minutes.

14.10 After ten minutes, add 100 μL of Stop Solution to each well.

14.11 Determine the absorbance (450 nm) of the contents of each well. Calibrate the plate reader to manufacturer’s specifications.
15. Calculations

Average the duplicate standard reading for each standard, sample and control blank. Subtract the control blank from all mean readings. Plot the mean standard readings against their concentrations and draw the best smooth curve through these points to construct a standard curve. Most plate reader software or graphing software can plot these values and curve fit. A four parameter algorithm (4PL) usually provides the best fit, though other equations can be examined to see which provides the most accurate (e.g. linear, semi-log, log/log, 4-parameter logistic). Extrapolate protein concentrations for unknown and control samples from the standard curve plotted. Samples producing signals greater than that of the highest standard should be further diluted in 1X Incubation Buffer and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.
16. Typical Data

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

<table>
<thead>
<tr>
<th>Conc. (ng/mL)</th>
<th>Mean O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.5</td>
<td>0.456</td>
</tr>
<tr>
<td>25</td>
<td>0.816</td>
</tr>
<tr>
<td>50</td>
<td>1.396</td>
</tr>
<tr>
<td>100</td>
<td>2.061</td>
</tr>
<tr>
<td>200</td>
<td>2.489</td>
</tr>
<tr>
<td>400</td>
<td>2.941</td>
</tr>
</tbody>
</table>

Figure 1. Example of Hemoglobin standard curve. Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.
17. Typical Sample Values

SENSITIVITY –
Calculated minimum detectable dose = 2.62 ng/mL

PRECISION –

<table>
<thead>
<tr>
<th></th>
<th>Intra-assay Precision</th>
<th>Inter-Assay Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV (%)</td>
<td>< 10%</td>
<td>< 10%</td>
</tr>
</tbody>
</table>

RECOVERY –
Control Serum Recovery = > 85%

18. Interferences

These chemicals or biologicals will cause interferences in this assay causing compromised results or complete failure.

Azide and thimerosal at concentrations higher than 0.1% inhibits the enzyme reaction.

Please contact our Technical Support team for more information.
19. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standards dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; change to overnight standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store the reconstituted protein at -80°C, all other assay components 4°C. Keep substrate solution protected from light.</td>
</tr>
</tbody>
</table>
20. Notes
Technical Support

Copyright © 2017 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

Austria
wissenschaftlcherdienst@abcam.com | 019-288-259

France
supportscientifique@abcam.com | 01.46.94.62.96

Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154

Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com

UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
can.technical@abcam.com | 877-749-8807

US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823

China
cn.technical@abcam.com | +86-21-5110-5938 | 400-628-6880

Japan
technical@abcam.co.jp | +81-(0)3-6231-0940

Singapore
gs.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450

New Zealand
nz.technical@abcam.com | +64-(0)9-909-7829