Instructions for Use

For the quantitative measurement of D-dimer in human serum, plasma, urine, and cell culture supernatants

This product is for research use only and is not intended for diagnostic use.

NOTE: This kit will recognize D-Dimer and other Fibrin Degradation Products (FDPs).
Table of Contents

INTRODUCTION
1. BACKGROUND
 2
2. ASSAY SUMMARY
 3

GENERAL INFORMATION
3. PRECAUTIONS
 4
4. STORAGE AND STABILITY
 4
5. MATERIALS SUPPLIED
 4
6. MATERIALS REQUIRED, NOT SUPPLIED
 5
7. LIMITATIONS
 5
8. TECHNICAL HINTS
 5

ASSAY PREPARATION
9. REAGENT PREPARATION
 7
10. STANDARD PREPARATION
 8
11. SAMPLE PREPARATION
 9
12. PLATE PREPARATION
 10

ASSAY PROCEDURE
13. ASSAY PROCEDURE
 11

DATA ANALYSIS
14. CALCULATIONS
 13
15. TYPICAL DATA
 14
16. TYPICAL SAMPLE VALUES
 15
17. ASSAY SPECIFICITY
 19
18. SPECIES REACTIVITY
 20

RESOURCES
19. TROUBLESHOOTING
 21
20. NOTES
 22
1. **BACKGROUND**

Abcam’s D-dimer *in vitro* SimpleStep ELISA® (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of D-dimer protein in human serum, plasma, urine, and cell culture supernatants.

The SimpleStep ELISA® employs an affinity tag labeled capture antibody and a reporter conjugated detector antibody which immunocapture the sample analyte in solution. This entire complex (capture antibody/analyte/detector antibody) is in turn immobilized via immunoaffinity of an anti-tag antibody coating the well. To perform the assay, samples or standards are added to the wells, followed by the antibody mix. After incubation, the wells are washed to remove unbound material. TMB substrate is added and during incubation is catalyzed by HRP, generating blue coloration. This reaction is then stopped by addition of Stop Solution completing any color change from blue to yellow. Signal is generated proportionally to the amount of bound analyte and the intensity is measured at 450 nm. Optionally, instead of the endpoint reading, development of TMB can be recorded kinetically at 600 nm.

D-dimer is a protein formed by the cross-linking of two D fragments of the fibrin protein. D-dimer is one of several fibrin degradation products (FDPs) formed by the degradation of a blood clot by fibrinolysis. Its measurement is used to diagnose the blood disorder disseminated intravascular coagulation and in the diagnosis of thrombosis.
2. **ASSAY SUMMARY**

Remove appropriate number of antibody coated well strips. Equilibrate all reagents to room temperature. Prepare all reagents, samples, and standards as instructed.

Add standard or sample to appropriate wells.

Add Antibody Cocktail to all wells. Incubate at room temperature.

Aspirate and wash each well. Add TMB Substrate to each well and incubate. Add Stop Solution at a defined endpoint. Alternatively, record color development kinetically after TMB substrate addition.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at 2-8°C immediately upon receipt.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Reagent and Standard Preparation sections.

5. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X D-Dimer Capture Antibody</td>
<td>600 µL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>10X D-Dimer Detector Antibody</td>
<td>600 µL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>D-Dimer Human Lyophilized Purified Protein</td>
<td>2 Vials</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Antibody Diluent 4BI</td>
<td>6 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>10X Wash Buffer PT</td>
<td>20 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>TMB Substrate</td>
<td>12 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Sample Diluent NS</td>
<td>50 mL</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Pre-Coated 96 Well Microplate (12 x 8 well strips)</td>
<td>96 Wells</td>
<td>+2-8°C</td>
</tr>
<tr>
<td>Plate Seal</td>
<td>1</td>
<td>+2-8°C</td>
</tr>
</tbody>
</table>
6. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully utilize this assay:

- Microplate reader capable of measuring absorbance at 450 or 600 nm.
- Method for determining protein concentration (BCA assay recommended).
- Deionized water.
- PBS (1.4 mM KH$_2$PO$_4$, 8 mM Na$_2$HPO$_4$, 140 mM NaCl, 2.7 mM KCl, pH 7.4).
- Multi- and single-channel pipettes.
- Tubes for standard dilution.
- Plate shaker for all incubation steps.
- Optional: Phenylmethylsulfonyl Fluoride (PMSF) (or other protease inhibitors).

7. **LIMITATIONS**

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

8. **TECHNICAL HINTS**

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
• Ensure plates are properly sealed or covered during incubation steps.
• Complete removal of all solutions and buffers during wash steps is necessary to minimize background.
• As a guide, typical ranges of sample concentration for commonly used sample types are shown below in Sample Preparation (section 11).
• All samples should be mixed thoroughly and gently.
• Avoid multiple freeze/thaw of samples.
• Incubate ELISA plates on a plate shaker during all incubation steps.
• When generating positive control samples, it is advisable to change pipette tips after each step.
• The provided Antibody Diluents and Sample Diluents contain protease inhibitor aprotinin. Additional protease inhibitors can be added if required.
• **To avoid high background always add samples or standards to the well before the addition of the antibody cocktail.**
• This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
9. **REAGENT PREPARATION**

- Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells. **The sample volumes below are sufficient for 48 wells (6 x 8-well strips); adjust volumes as needed for the number of strips in your experiment.**

- Prepare only as much reagent as is needed on the day of the experiment. Capture and Detector Antibodies have only been tested for stability in the provided 10X formulations.

9.1 **1X Wash Buffer PT**

Prepare 1X Wash Buffer PT by diluting 10X Wash Buffer PT with deionized water. To make 50 mL 1X Wash Buffer PT combine 5 mL 10X Wash Buffer PT with 45 mL deionized water. Mix thoroughly and gently.

9.2 **Antibody Cocktail**

Prepare Antibody Cocktail by diluting the capture and detector antibodies in Antibody Diluent 4BI. To make 3 mL of the Antibody Cocktail combine 300 µL 10X Capture Antibody and 300 µL 10X Detector Antibody with 2.4 mL Antibody Diluent 4BI. Mix thoroughly and gently.
10. **STANDARD PREPARATION**

Prepare serially diluted standards immediately prior to use. Always prepare a fresh set of positive controls for every use.

The following section describes the preparation of a standard curve for duplicate measurements (recommended).

10.1 Reconstitute the D-Dimer lyophilized protein by adding 100 µL water by pipette. Mix thoroughly and gently. Hold at room temperature for 10 minutes and mix gently. This is the 1000 ng/mL **Stock Standard** Solution.

10.2 Label eight tubes, Standards 1–8.

10.3 Add 388 µL Sample Diluent NS into tube number 1 and 150 µL of Sample Diluent NS into numbers 2-8.

10.4 Use the Stock Standard to prepare the following dilution series. Standard #8 contains no protein and is the Blank control:
11. SAMPLE PREPARATION

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Range (dilution)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Urine</td>
<td>1:4 - 1:64</td>
</tr>
<tr>
<td>Human Serum</td>
<td>1:200 - 1:6,400</td>
</tr>
<tr>
<td>Human Plasma – EDTA</td>
<td>1:20 - 1:1,000</td>
</tr>
<tr>
<td>Human Plasma - Citrate</td>
<td>1:20 - 1:1,000</td>
</tr>
<tr>
<td>Cell Culture Supernatant</td>
<td>1:4 - 1:64</td>
</tr>
</tbody>
</table>

11.1 **Plasma**
Collect plasma using citrate, EDTA or heparin. Centrifuge samples at 2,000 x g for 10 minutes. Dilute samples into Sample Diluent NS and assay. Store un-diluted plasma samples at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.2 **Serum**
Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 2,000 x g for 10 minutes and collect serum. Dilute samples into Sample Diluent NS and assay. Store un-diluted serum at -20°C or below. Avoid repeated freeze-thaw cycles.

11.3 **Cell Culture Supernatants**
Centrifuge cell culture media at 2,000 x g for 10 minutes to remove debris. Collect supernatants and assay. Store samples at -20°C or below. Avoid repeated freeze-thaw cycles.

11.4 **Urine**
Centrifuge urine at 2,000 x g for 10 minutes to remove debris. Collect supernatants, dilute in Sample Diluent NS and assay. Store samples at -20°C or below. Avoid repeated freeze-thaw cycles.
12. PLATE PREPARATION

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.

- Unused plate strips should be immediately returned to the foil pouch containing the desiccant pack, resealed and stored at 4°C.

- For each assay performed, a minimum of two wells must be used as the zero control.

- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

- Differences in well absorbance or “edge effects” have not been observed with this assay.
ASSAY PROCEDURE

13. ASSAY PROCEDURE

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections.

13.2 Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, reseal and return to 4°C storage.

13.3 Add 50 µL of all sample or standard to appropriate wells.

13.4 Add 50 µL of the Antibody Cocktail to each well.

13.5 Seal the plate and incubate for 1 hour at room temperature on a plate shaker set to 400 rpm.

13.6 Wash each well with 3 x 350 µL 1X Wash Buffer PT. Wash by aspirating or decanting from wells then dispensing 350 µL 1X Wash Buffer PT into each well. Complete removal of liquid at each step is essential for good performance. After the last wash invert the plate and blot it against clean paper towels to remove excess liquid.

13.7 Add 100 µL of TMB Substrate to each well and incubate for 10 minutes in the dark on a plate shaker set to 400 rpm.

13.8 Add 100 µL of Stop Solution to each well. Shake plate on a plate shaker for 1 minute to mix. Record the OD at 450 nm. This is an endpoint reading.

Alternative to 13.7 – 13.8: Instead of the endpoint reading at 450 nm, record the development of TMB Substrate kinetically. Immediately after addition of TMB Development Solution begin recording the blue color development with elapsed time in the microplate reader prepared with the following settings:
ASSAY PROCEDURE

<table>
<thead>
<tr>
<th>Mode</th>
<th>Kinetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td>600 nm</td>
</tr>
<tr>
<td>Time</td>
<td>up to 15 min</td>
</tr>
<tr>
<td>Interval</td>
<td>20 sec - 1 min</td>
</tr>
<tr>
<td>Shaking</td>
<td>Shake between readings</td>
</tr>
</tbody>
</table>

Note that an endpoint reading can also be recorded at the completion of the kinetic read by adding 100 µL Stop Solution to each well and recording the OD at 450 nm.

13.9 Analyze the data as described below.
14. **CALCULATIONS**

14.1 Calculate the average absorbance value for the blank control (zero) standards. Subtract the average blank control standard absorbance value from all other absorbance values.

14.2 Create a standard curve by plotting the average blank control subtracted absorbance value for each standard concentration (y-axis) against the target protein concentration (x-axis) of the standard. Use graphing software to draw the best smooth curve through these points to construct the standard curve.

Note: Most microplate reader software or graphing software will plot these values and fit a curve to the data. A four parameter curve fit (4PL) is often the best choice; however, other algorithms (e.g. linear, semi-log, log/log, 4 parameter logistic) can also be tested to determine if it provides a better curve fit to the standard values.

14.3 Determine the concentration of the target protein in the sample by interpolating the blank control subtracted absorbance values against the standard curve. Multiply the resulting value by the appropriate sample dilution factor, if used, to obtain the concentration of target protein in the sample.

14.4 Samples generating absorbance values greater than that of the highest standard should be further diluted and reanalyzed. Similarly, samples which measure at an absorbance values less than that of the lowest standard should be retested in a less dilute form.
15. **TYPICAL DATA**

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Standard Curve Graph](image)

<table>
<thead>
<tr>
<th>Conc. (ng/mL)</th>
<th>O.D. 450 nm</th>
<th>Mean O.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0.051</td>
<td>0.049</td>
</tr>
<tr>
<td>0.475</td>
<td>0.121</td>
<td>0.123</td>
</tr>
<tr>
<td>0.95</td>
<td>0.193</td>
<td>0.193</td>
</tr>
<tr>
<td>1.9</td>
<td>0.325</td>
<td>0.321</td>
</tr>
<tr>
<td>3.8</td>
<td>0.561</td>
<td>0.587</td>
</tr>
<tr>
<td>7.5</td>
<td>1.112</td>
<td>1.083</td>
</tr>
<tr>
<td>15.0</td>
<td>2.043</td>
<td>2.001</td>
</tr>
<tr>
<td>30</td>
<td>3.388</td>
<td>3.358</td>
</tr>
</tbody>
</table>

Figure 1. Example of D-Dimer standard curve. The D-Dimer standard curve was prepared as described in Section 10. Raw data values are shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
16. **TYPICAL SAMPLE VALUES**

SENSITIVITY –

The calculated minimal detectable dose (MDD) is 71 pg/mL. The MDD was determined by calculating the mean of zero standard replicates (n=25) and adding 2 standard deviations then extrapolating the corresponding concentrations.

RECOVERY –

Three concentrations of D-Dimer were spiked in duplicate to the indicated biological matrix to evaluate signal recovery in the working range of the assay.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Average % Recovery</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1% Human Serum</td>
<td>105</td>
<td>104 – 107</td>
</tr>
<tr>
<td>0.4% Human Plasma - EDTA</td>
<td>104</td>
<td>100 – 107</td>
</tr>
<tr>
<td>0.4% Human Plasma - Citrate</td>
<td>105</td>
<td>102 – 109</td>
</tr>
<tr>
<td>25% Human Urine</td>
<td>99</td>
<td>98 – 101</td>
</tr>
<tr>
<td>25% Conditioned Media</td>
<td>101</td>
<td>95 – 105</td>
</tr>
</tbody>
</table>
LINEARITY OF DILUTION –

Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.

Native D-Dimer was measured in the following biological samples in a 2-fold dilution series. Sample dilutions are made in Sample Diluent NS.

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Interpolated value</th>
<th>1% Human Serum</th>
<th>5% Human Plasma (Citrate)</th>
<th>5% Human Plasma (EDTA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undiluted</td>
<td>ng/mL</td>
<td>31.8</td>
<td>16.4</td>
<td>18.7</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>ng/mL</td>
<td>16.9</td>
<td>8.7</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>106</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>4</td>
<td>ng/mL</td>
<td>8.3</td>
<td>4.2</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>104</td>
<td>101</td>
<td>112</td>
</tr>
<tr>
<td>8</td>
<td>ng/mL</td>
<td>4.3</td>
<td>2.0</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>108</td>
<td>96</td>
<td>101</td>
</tr>
<tr>
<td>16</td>
<td>ng/mL</td>
<td>2.1</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>105</td>
<td>98</td>
<td>98</td>
</tr>
<tr>
<td>32</td>
<td>ng/mL</td>
<td>1.0</td>
<td>0.5</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>102</td>
<td>95</td>
<td>104</td>
</tr>
<tr>
<td>64</td>
<td>ng/mL</td>
<td>0.6</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>112</td>
<td>120</td>
<td>113</td>
</tr>
</tbody>
</table>
Native D-Dimer was spiked into the following biological samples in a 2-fold dilution series. Sample dilutions are made in Sample Diluent NS.

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Interpolated value</th>
<th>25% Human Urine</th>
<th>25% Conditioned Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undiluted</td>
<td>ng/mL</td>
<td>22.5</td>
<td>19.6</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>ng/mL</td>
<td>10.8</td>
<td>9.4</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>4</td>
<td>ng/mL</td>
<td>5.2</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>93</td>
<td>96</td>
</tr>
<tr>
<td>8</td>
<td>ng/mL</td>
<td>2.6</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>93</td>
<td>99</td>
</tr>
<tr>
<td>16</td>
<td>ng/mL</td>
<td>1.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>92</td>
<td>97</td>
</tr>
</tbody>
</table>

PRECISION –
Mean coefficient of variations of interpolated values from 3 concentrations of D-Dimer within the working range of the assay.

<table>
<thead>
<tr>
<th></th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n=</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>CV (%)</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
Figure 2. Titration of human serum within the working range of the assay. Background-subtracted data values (mean +/- SD, n = 3) are graphed.

Figure 3. D-Dimer levels in individual healthy donors. Ten individual healthy donors were evaluated for the presence of D-Dimer in serum using this assay. Mean human D-Dimer level observed was 2.46 µg/mL.
17. **ASSAY SPECIFICITY**

This kit recognizes native human D Dimer protein and other fibrin degradation products in serum, plasma (EDTA and citrate), urine and cell culture supernatant samples only.

Heparin plasma is not validated for this kit.

Cell and tissue extract samples have not been tested with this kit.

CROSS REACTIVITY

The following proteins were prepared at 50 ng/mL and assayed for cross reactivity. No cross-reactivity was observed.

- Fibrinogen
- Plasminogen
- Plasmin
- Angiostatin
- TPA
- PAI1

INTERFERENCE

The following proteins were prepared at 50 ng/mL and assayed for assay interference in the presence of 10 ng/mL D-Dimer. No interference was observed.

- Fibrinogen
- Plasminogen
- Plasmin
- Angiostatin
- TPA
- PAI1
18. **SPECIES REACTIVITY**

This kit recognizes human Fibrinogen D Dimer protein and other fibrin degradation products.

Other species reactivity was determined by measuring 0.5% serum samples of various species, interpolating the protein concentrations from the human standard curve, and expressing the interpolated concentrations as a percentage of the protein concentration in human serum assayed at the same dilution.

Reactivity < 1% was determined for the following species:

- Mouse
- Rat
- Hamster
- Guinea Pig
- Rabbit
- Goat
- Cow
- Chicken
- Dog
- Pig

Please contact our Technical Support team for more information.
Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty pipetting lysate; viscous lysate.</td>
<td>Genomic DNA solubilized</td>
<td>Prepare 1X Cell Extraction Buffer PTR (without enhancer). Add enhancer to lysate after extraction.</td>
</tr>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate Pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standard dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; increase to 2 or 3 hour standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td></td>
<td>Incubation times with TMB too brief</td>
<td>Ensure sufficient incubation time until blue color develops prior addition of Stop solution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions.</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store your reconstituted standards at -80°C, all other assay components 4°C. Keep TMB substrate solution protected from light.</td>
</tr>
<tr>
<td>Precipitate in Diluent</td>
<td>Precipitation and/or coagulation of components within the Diluent.</td>
<td>Precipitate can be removed by gently warming the Diluent to 37°C.</td>
</tr>
</tbody>
</table>
20. **NOTES**
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 400 921 0189 / +86 21 2070 0500

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2015 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.