ab197008

Beta Lactamase Activity Assay Kit (Colorimetric)

Instructions for Use

For the rapid, sensitive and accurate measurement of Beta-Lactamase activity in various biological samples.

This product is for research use only and is not intended for diagnostic use.

PLEASE NOTE: With the acquisition of BioVision by Abcam, we have made some changes to component names and packaging to better align with our global standards as we work towards environmental-friendly and efficient growth. You are receiving the same high-quality products as always, with no changes to specifications or protocols.
Table of Contents

INTRODUCTION
1. OVERVIEW 2
2. ASSAY SUMMARY 3

GENERAL INFORMATION
3. PRECAUTIONS 4
4. STORAGE AND STABILITY 4
5. MATERIALS SUPPLIED 5
6. MATERIALS REQUIRED, NOT SUPPLIED 5
7. LIMITATIONS 6
8. TECHNICAL HINTS 7

ASSAY PREPARATION
9. REAGENT PREPARATION 8
10. STANDARD PREPARATION 9
11. SAMPLE PREPARATION 10

ASSAY PROCEDURE and DETECTION
12. ASSAY PROCEDURE and DETECTION 11

DATA ANALYSIS
13. CALCULATIONS 13
14. TYPICAL DATA 15

RESOURCES
15. QUICK ASSAY PROCEDURE 17
16. TROUBLESHOOTING 18
17. FAQ 20
18. INTERFERENCES 21
19. NOTES 22
INTRODUCTION

1. OVERVIEW

Beta Lactamase Activity Assay Kit (Colorimetric) (ab197008) is a simple and sensitive assay that can detect and quantify the enzymatic activity of these hydrolases. The assay is based on the hydrolysis of the substrate Nitrocefin, a chromogenic cephalosporin, that results in the generation of a colored product (detectable at OD490 nm), which is directly proportional to the amount of beta-lactamase activity his product can detect as low as 0.06 mU of beta-lactamase activity from bacterial samples or from biological fluids infected with beta-lactamase expressing bacteria.

Beta-Lactamase (βL), (EC 3.5.2.6), is a bacterial enzyme that belongs to a large family of hydrolases comprising more than 850 identified members expressed in Gram-positive and Gram-negative bacteria. βLs can be classified according to their substrate or inhibitor specificity. These enzymes are capable of hydrolyzing four atom rings known as β-lactams, the building block of β-Lactam antibiotics. β-Lactams, such as Penams, Carbapenems, Cephems, Clavams, Oxacephems and Monobactams, have been widely used for the treatment of bacterial infections since the discovery of penicillin, the first β-Lactam antibiotic, and its bactericidal effect more than eighty years ago. These drugs are highly susceptible to be hydrolyzed via enzymatic activity, which deactivates their antibiotic potency. βLs have become a significant clinical threat due to the alarming number of cases of bacterial strains showing β-lactam antibiotic resistance.
2. ASSAY SUMMARY

Sample preparation

Standard curve preparation

Add reaction mix

Measure optical density (OD490 nm) in a kinetic mode at RT for 30 – 60 min*

*For kinetic mode detection, incubation time given in this summary is for guidance only.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at -20ºC in the dark immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in section 5.

Aliquot components in working volumes before storing at the recommended temperature. **Reconstituted components are stable for 2 months.**
5. MATERIALS SUPPLIED

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
<th>Storage Condition (After Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer XLII/Beta Lactamase</td>
<td>27 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Assay Buffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrocefin/Nitrocefin (in DMSO)</td>
<td>220 µL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>β-Lactamase Positive Control/Positive Control (Lyophilized)</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>βL Hydrolysis Buffer/Beta Lactamase Hydrolysis Buffer</td>
<td>100 µL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>

6. MATERIALS REQUIRED, NOT SUPPLIED

These materials are not included in the kit, but will be required to successfully utilize this assay:

- MilliQ water or other type of double distilled water (ddH₂O)
- Cold PBS
- DMSO
- Microcentrifuge
- Pipettes and pipette tips
- Colorimetric microplate reader – equipped with filter for OD 490 nm
- 96 well plate: clear plate for colorimetric assay
- Sonicator
- Heat block or water bath
- Vortex
7. **LIMITATIONS**

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not use kit or components if it has exceeded the expiration date on the kit labels.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.
8. TECHNICAL HINTS

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.

- Keep enzymes and heat labile components and samples on ice during the assay.

- Make sure all buffers and developing solutions are at room temperature before starting the experiment.

- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.

- Avoid foaming or bubbles when mixing or reconstituting components.

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.

- Ensure plates are properly sealed or covered during incubation steps.

- Ensure complete removal of all solutions and buffers from tubes or plates during wash steps.

- Make sure you have the appropriate type of plate for the detection method of choice.

- Make sure the heat block/water bath and microplate reader are switched on before starting the experiment.
9. REAGENT PREPARATION

- Briefly centrifuge small vials at low speed prior to opening.

9.1 Assay Buffer XLII/BL Assay Buffer:
Ready to use as supplied. Equilibrate to room temperature before use. Store at -20°C.

9.2 βL Hydrolysis Buffer/BL Hydrolysis Buffer:
Ready to use as supplied. Equilibrate to room temperature before use. Store at -20°C.

9.3 Nitrocefin/Nitrocefin (in DMSO):
Ready to use as supplied. Warm by placing in a 37°C bath for 1 – 5 minutes to thaw the DMSO solution before use. NOTE: DMSO tends to be solid when stored at -20°C, even when left at room temperature, so it needs to melt for few minutes at 37°C. Aliquot substrate so that you have enough volume to perform the desired number of assays. Store at -20°C protected from light and moisture. Use within 2 months.

9.4 β-Lactamase Positive Control/Positive Control:
Reconstitute with 20 µL Assay Buffer XLII/BL Assay Buffer and mix gently by pipetting. Aliquot β-Lactamase Positive Control/positive control so that you have enough volume to perform the desired number of assays. Store aliquots at -20°C. Avoid repeated freeze/thaw. Use within 2 months.
10. STANDARD PREPARATION

- Always prepare a fresh set of standards for every use.
- Hydrolyzed nitrocefin solution should be prepared immediately prior the assay. Do not store and discard unused standard.

10.1 Hydrolyze Nitrocefin stock solution (see Section 9.3) by adding 8 µL of Nitrocefin to 16 µL of βL Hydrolysis Buffer/Beta Lactamase Hydrolysis Buffer and 56 µL of DMSO (ratio 1:2:7) in an eppendorf tube.

10.2 Incubate the reaction at 60°C for 30 min. Cool the reaction to room temperature and briefly centrifuge the tube.

10.3 Using the hydrolyzed Nitrocefin solution (2 mM stock solution) prepare standard curve dilution as described in the table in a microplate or microcentrifuge tubes:

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume of standard (µL)</th>
<th>Assay Buffer (µL)</th>
<th>Final volume standard in well (µL)</th>
<th>End Conc. hydrolyzed Nitrocefin in well</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>250</td>
<td>100 µL</td>
<td>0 nmol/well</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>245</td>
<td>100 µL</td>
<td>4 nmol/well</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>240</td>
<td>100 µL</td>
<td>8 nmol/well</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>235</td>
<td>100 µL</td>
<td>12 nmol/well</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>230</td>
<td>100 µL</td>
<td>16 nmol/well</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>225</td>
<td>100 µL</td>
<td>20 nmol/well</td>
</tr>
</tbody>
</table>

Each dilution has enough amount of standard to set up duplicate reading (2 x 100 µL).
11. **SAMPLE PREPARATION**

General Sample information:

- We recommend performing several dilutions of your sample to ensure the readings are within the standard value range.
- We recommend that you use fresh samples. If you cannot perform the assay at the same time, we suggest that you complete the Sample Preparation step before storing the samples. Alternatively, if that is not possible, we suggest that you snap freeze bacteria cells in liquid nitrogen upon extraction and store the samples immediately at -80°C. When you are ready to test your samples, thaw them on ice. Be aware however that this might affect the stability of your samples and the readings can be lower than expected.

11.1 **Bacterial samples:**

11.1.1 Pre-weight collection sample tube and label

11.1.2 Collect bacterial samples by centrifugation at 10000 x g during 10 minutes.

11.1.3 Remove supernatant and determine wet weight of the pellet.

11.1.4 Resuspend pellet in of 5 µL of Assay Buffer XLII/BL assay Buffer per mg of sample. More BL buffer can be added if required to resuspend the pellet, but keep in mind that final sample might be more diluted.

11.1.5 Sonicate samples for 5 minutes. Keep samples on ice for 5 minutes. Remove insoluble material by centrifugation at 16,000 x g at 4°C for 20 minutes. Collect supernatant.

11.1.6 Keep sample on ice.

11.2 **Liquid samples (biological fluids, fermentation media):**

Samples can be tested directly by adding sample to the sample to the microplate wells.
NOTE: We suggest using different volumes of sample to ensure readings are within the Standard Curve range.
ASSAY PROCEDURE and DETECTION

12. ASSAY PROCEDURE and DETECTION

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

12.1 Set up Reaction wells:
- Standard wells = 100 µL Standard dilutions.
- Sample wells = 1 – 50 µL samples (adjust volume to 50 µL/well with Assay Buffer XLII/BL Assay Buffer).
- β-Lactamase Positive Control/Positive control (from Section 9.4): dilute 1:5 in Assay Buffer XLII/BL Assay Buffer just before detection. Use 1 – 10 µL diluted β-Lactamase Positive Control/Positive Control enzyme (adjust volume to 50 µL/well with Assay Buffer XLII/BL Assay Buffer).

12.2 Reaction Mix:
Prepare of 50 µL of Reaction Mix for each reaction:

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer XLII/Beta Lactamase Assay Buffer</td>
<td>48</td>
</tr>
<tr>
<td>Nitrocefin</td>
<td>2</td>
</tr>
</tbody>
</table>

Mix enough reagents for the number of assays (samples and positive control) to be performed. Prepare a Master Mix of the Reaction Mix to ensure consistency. We recommend the following calculation:

X µL component x (Number samples + positive controls +1).

12.3 Add 50 µL of Reaction Mix into each sample and positive control wells. DO not add reaction mix to the standards. Mix well.

12.4 Measure output immediately (T₁) on a colorimetric microplate reader at OD = 490 nm to obtain corresponding absorbance (A₁).
12.5 Measure absorbance on a microplate reader at OD=490 nm in a kinetic mode, every 2 – 3 minutes, for at least 30 – 60 minutes at RT protected from light.

NOTE: Incubation time depends on the Beta Lactamase activity in samples. Longer incubation times may be required if sample’s Beta Lactamase activity is low.

We recommend measuring the OD in kinetic mode, and choosing two time points (T₁ & T₂) in the linear range to calculate the beta lactamase activity of the samples.

The Nitrocefin Standard Curve can be read in Endpoint mode (i.e., at the end of the incubation time [60 min.]) The Standard Curve will not change as incubation time increases.
13. **CALCULATIONS**

- Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

13.1 Average the duplicate reading for each standard and sample.
13.2 Subtract the mean absorbance value of the blank (Standard #1) from all standard and sample readings. This is the corrected absorbance.
13.3 Plot the corrected absorbance values for each standard as a function of the final concentration of hydrolyzed Nitrocefin.
13.4 Draw the best smooth curve through these points to construct the standard curve. Most plate reader software or Excel can plot these values and curve fit. Calculate the trendline equation based on your standard curve data (use the equation that provides the most accurate fit).
13.5 Extrapolate sample readings from the standard curve plotted using the following equation:

\[
\text{Time point value} = \frac{(\text{Corrected absorbance} - (y-intercept))}{\text{Slope}}
\]

**Time point = A}_1 \text{ or } A}_2 \]

13.6 Activity of Beta Lactamase is:

\[
\Delta \text{OD}_{490 \text{nm}} = A}_2 - A}_1 \]

13.7 Use the \(\Delta \text{OD}_{490 \text{nm}} \) to obtain B nmoles of hydrolyzed Nitrocefin:

\[
BL \text{ Activity} = \left(\frac{B}{(T}_2 - T}_1 x V) \right) * D
\]

= nmol/min/mL = mU/mL

Where:
B = Amount of hydrolyzed Nitrocefin from Standard Curve (nmol)
T1 = Time of the first reading \((A_1) \) in minutes.
T2 = Time of the second reading \((A_2) \) in minutes.
V = volume added into the reaction well (mL).
D = sample dilution factor.

Sample Beta Lactamase Activity can also be expressed as mU/mg (nmoles/min hydrolyzed Nitrocefin generated per mg) of protein.

Unit Definition:

1 Unit Beta Lactamase activity = amount of enzyme that generates 1.0 µmol of nitrocefin per minute at pH7.0 at 25°C.
14. TYPICAL DATA

TYPICAL STANDARD CURVE – Data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Typical Nitrocefin Standard Curve](image)

Figure 1: Typical Nitrocefin Standard Curve.

![Beta Lactamase activity in E. coli culture](image)

Figure 2: Beta Lactamase activity in E. coli culture (green; 5 µL), contaminated media (CM) (purple; 30 µL) and β-Lactamase Positive Control/Positive Control (red; 4 µL). Background reading is shown in blue.
Figure 3: Beta Lactamase Activity of E.coli and contaminated media expressed per milligram of protein. Assay was performed following the kit protocol.
15. QUICK ASSAY PROCEDURE

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when performing the assay for the first time.

- Thaw nitrocefin, solubilize β-Lactamase Positive Control/positive control (aliquot if necessary); get equipment ready.
- Prepare standard curve for colorimetric detection.
- Prepare samples in duplicate (find optimal dilutions to fit standard curve readings, make up to 50 µL with Assay Buffer XLII/BL Assay Buffer).
- Set up a plate for standard (100 µL); samples (50 µL) and positive control (50 µL).
- Prepare Reaction Mix (50 µL/well) (Number samples + positive control + 1).

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer XLII/Beta Lactamase Assay Buffer</td>
<td>48</td>
</tr>
<tr>
<td>Nitrocefin</td>
<td>2</td>
</tr>
</tbody>
</table>

- Add 50 µL Reaction mix to samples and positive control wells.
- Measure output plate (A₁) at time T₁ at OD = 490 nm.
- Measure plate (A₂) at time T₂ at OD = 490 nm, while incubating plate at RT during 30 – 60 minutes, protected from light.
16. TROUBLESHOOTING

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay not working</td>
<td>Use of ice-cold buffer</td>
<td>Buffers must be at room temperature</td>
</tr>
<tr>
<td></td>
<td>Plate read at incorrect wavelength</td>
<td>Check the wavelength and filter settings of instrument</td>
</tr>
<tr>
<td></td>
<td>Use of a different 96-well plate</td>
<td>Colorimetric: Clear plates Fluorometric: black wells/clear bottom plate</td>
</tr>
<tr>
<td>Sample with erratic readings</td>
<td>Samples not deproteinized (if indicated on protocol)</td>
<td>Use PCA precipitation protocol for deproteinization</td>
</tr>
<tr>
<td></td>
<td>Cells/tissue samples not homogenized completely</td>
<td>Use Dounce homogenizer, increase number of strokes</td>
</tr>
<tr>
<td></td>
<td>Samples used after multiple free/ thaw cycles</td>
<td>Aliquot and freeze samples if needed to use multiple times</td>
</tr>
<tr>
<td></td>
<td>Use of old or inappropriate stored samples</td>
<td>Use fresh samples or store at -80°C (after snap freeze in liquid nitrogen) till use</td>
</tr>
<tr>
<td></td>
<td>Presence of interfering substance in the sample</td>
<td>Check protocol for interfering substances; deproteinize samples</td>
</tr>
<tr>
<td>Lower/ Higher readings in samples and Standards</td>
<td>Improperly thawed components</td>
<td>Thaw all components completely and mix gently before use</td>
</tr>
<tr>
<td></td>
<td>Allowing reagents to sit for extended times on ice</td>
<td>Always thaw and prepare fresh reaction mix before use</td>
</tr>
<tr>
<td></td>
<td>Incorrect incubation times or temperatures</td>
<td>Verify correct incubation times and temperatures in protocol</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Standard readings do not follow a linear pattern</td>
<td>Pipetting errors in standard or reaction mix</td>
<td>Avoid pipetting small volumes (< 5 µL) and prepare a master mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the tubes</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Always refer to dilutions described in the protocol</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Measured at incorrect wavelength</td>
<td>Check equipment and filter setting</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>Troubleshoot if it interferes with the kit</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/ below the linear range</td>
<td>Concentrate/ Dilute sample so it is within the linear range</td>
</tr>
</tbody>
</table>
18. INTERFERENCES

These chemicals or biological materials will cause interferences in this assay causing compromised results or complete failure:

- RIPA buffer – contains SDS which can denature proteins and affect enzyme activity.
19. **NOTES**