ab204707

Purine Nucleoside Phosphorylase Activity Assay Kit (Colorimetric)

Instructions for Use

For rapid, sensitive and accurate detection of Purine Nucleoside Phosphorylase Activity.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

INTRODUCTION
1. BACKGROUND 2
2. ASSAY SUMMARY 3

GENERAL INFORMATION
3. PRECAUTIONS 4
4. STORAGE AND STABILITY 4
5. LIMITATIONS 4
6. MATERIALS SUPPLIED 5
7. MATERIALS REQUIRED, NOT SUPPLIED 5
8. TECHNICAL HINTS 6

ASSAY PREPARATION
9. REAGENT PREPARATION 7
10. STANDARD PREPARATION 8
11. SAMPLE PREPARATION 9

ASSAY PROCEDURE and DETECTION
12. ASSAY PROCEDURE and DETECTION 11

DATA ANALYSIS
13. CALCULATIONS 13
14. TYPICAL DATA 15

RESOURCES
15. QUICK ASSAY PROCEDURE 17
16. TROUBLESHOOTING 18
17. INTERFERENCES 20
18. FAQ 21
19. NOTES 22
INTRODUCTION

1. BACKGROUND

Purine Nucleoside Phosphorylase Activity Assay Kit (Colorimetric) (ab204707) is an assay where the hypoxanthine formed by the breakdown of inosine is further converted to uric acid using a developer. The uric acid is measured at a wavelength of OD = 293 nm. Limit of quantification is 0.1 µU recombinant Purine Nucleoside Phosphorylase.

\[
\text{Inosine} + \text{Pi} \rightarrow \text{Hypoxanthine} + \text{Ribose-1-Phosphate}
\]

Purine Nucleoside Phosphorylase (PNP) (E.C. 2.4.2.1.) is an enzyme involved in purine metabolism and it catalyzes the cleavage of the glycosidic bond of ribo- or deoxyribonucleosides, in the presence of inorganic phosphate as a second substrate, to generate the purine base and ribose-1-phosphate or deoxyribose-1-phosphate. It is one of the enzymes of the nucleotide salvage pathways that allow the cell to produce nucleotide monophosphates when the de novo synthesis pathway has been interrupted or is non-existent (as is the case in the brain). PNP is a cytosolic enzyme. PNP deficiency disease leads to toxic buildup of deoxyguanosine in T-cells leading to T-lymphocytopenia with no apparent effects on B-lymphocyte function. Inhibition of PNP is an important target for chemotherapeutic applications and treatment of T-cell mediated autoimmune diseases. PNP deficiency is also associated with neurological problems.
2. **ASSAY SUMMARY**

- Standard Curve Preparation
- Sample Preparation
- Add Reaction Mix
- Measure absorbance (OD293 nm) in a kinetic mode at room temperature for 30 minutes*

*For kinetic mode detection, incubation time given in this summary is for guidance only.
3. **PRECAUTIONS**

Please read these instructions carefully prior to beginning the assay.

All kit components have been formulated and quality control tested to function successfully as a kit. Modifications to the kit components or procedures may result in loss of performance.

4. **STORAGE AND STABILITY**

Store kit at -20ºC in the dark immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in Materials Supplied section.

Aliquot components in working volumes before storing at the recommended temperature. Reconstituted components are stable for 2 months.

5. **LIMITATIONS**

- Assay kit intended for research use only. Not for use in diagnostic procedures.

- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.
GENERAL INFORMATION

6. **MATERIALS SUPPLIED**

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Storage Condition (Before Preparation)</th>
<th>Storage Condition (After Preparation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP Assay Buffer (10x)</td>
<td>10 mL</td>
<td>-20°C</td>
<td>-20°C / 4°C</td>
</tr>
<tr>
<td>Developer</td>
<td>1 Vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Inosine Substrate</td>
<td>200 µL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Hypoxanthine Standard (10 mM)</td>
<td>100 µL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>PNP Positive Control</td>
<td>1 Vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>U.V. transparent plate (96-well)</td>
<td>1</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>

7. **MATERIALS REQUIRED, NOT SUPPLIED**

These materials are not included in the kit, but will be required to successfully perform this assay:

- MilliQ water or other type of double distilled water (ddH₂O)
- Microcentrifuge
- Cold PBS
- Pipettes and pipette tips
- Multi-well spectrophotometer capable of absorbance measurement
- Dounce homogenizer (if using tissue)
- (optional) 10 kD Spin Column (ab93349) or desalting column.
8. **TECHNICAL HINTS**

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.

- Selected components in this kit are supplied in surplus amount to account for additional dilutions, evaporation, or instrumentation settings where higher volumes are required. They should be disposed of in accordance with established safety procedures.

- Keep enzymes, heat labile components and samples on ice during the assay.

- Make sure all buffers and solutions are at room temperature before starting the experiment.

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.

- Avoid foaming or bubbles when mixing or reconstituting components.

- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.

- Ensure plates are properly sealed or covered during incubation steps.

- Make sure you have the right type of plate for your detection method of choice.

- Make sure the heat block/water bath and microplate reader are switched on.
9. **REAGENT PREPARATION**

- Briefly centrifuge small vials at low speed prior to opening.

9.1 **PNP Assay Buffer (10X):**

Make 1X buffer by adding one part 10X Assay Buffer to nine parts ddH$_2$O. Store at -20°C or 4°C. Bring to room temperature before use.

9.2 **Developer:**

Reconstitute with 210 µL 1X PNP Assay Buffer and mix gently by pipetting up and down. Briefly centrifuge to collect the contents in the bottom of the tube. Aliquot developer so that you have enough volume to perform the desired number of assays. Store at -20°C. Avoid repeated freeze/thaw.

9.3 **Inosine Substrate:**

Aliquot substrate that you have enough volume to perform the desired number of assays. Store at -20°C. Avoid repeated freeze/thaw.

9.4 **PNP Positive Control:**

Reconstitute with 22 µL 1X PNP Assay Buffer and mix gently by pipetting. Briefly centrifuge to collect the contents in the bottom of the tube. Aliquot positive control so that you have enough volume to perform the desired number of assays. Store at -20°C. Avoid repeated freeze/thaw.

9.5 **Hypoxanthine Standard (10mM):**

Ready to use as supplied. Aliquot standard so that you have enough volume to perform the desired number of assays. Store at -20°C. Avoid repeated freeze/thaw.

9.6 **U.V. Transparent plate (96-well):**

Ready to use as supplied. Store at -20°C. Bring to room temperature before use.
10. **STANDARD PREPARATION**

- Always prepare a fresh set of standards for every use.
- Diluted standard solution is unstable and cannot be stored for future use.

10.1 Prepare 100 µL of 1 mM Hypoxanthine standard by diluting 10 µL of the provided 10 mM Hypoxanthine standard with 90 µL of 1x PNP assay buffer.

10.2 Using 1 mM Hypoxanthine standard, prepare standard curve dilution as described in the table in a microplate or microcentrifuge tubes:

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Volume of Standard (µL)</th>
<th>Assay Buffer (µL)</th>
<th>Final volume standard in well (µL)</th>
<th>End Conc Hypoxanthine in well (nmol/well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>150</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>144</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>138</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>18</td>
<td>132</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>126</td>
<td>50</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>120</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

Each dilution has enough amount of standard to set up duplicate readings (2 x 50 µL).
11. **SAMPLE PREPARATION**

General Sample information:

- We recommend performing several dilutions of your sample to ensure the readings are within the standard value range.
- We recommend that you use fresh samples. If you cannot perform the assay at the same time, we suggest that you complete the Sample Preparation step before storing the samples. Alternatively, if that is not possible, we suggest that you snap freeze cells or tissue in liquid nitrogen upon extraction and store the samples immediately at -80°C. When you are ready to test your samples, thaw them on ice. Be aware however that this might affect the stability of your samples and the readings can be lower than expected.

11.1 **Cell (adherent or suspension) samples:**

11.1.1 Harvest the amount of cells necessary for each assay (initial recommendation = 1 – 5 x 10^6 cells).

11.1.2 Wash cells with cold PBS.

11.1.3 Resuspend cells 150 – 300 µL of ice cold 1X PNP Assay Buffer (containing Protease Inhibitor Cocktail).

11.1.4 Homogenize cells quickly by pipetting up and down a few times.

11.1.5 Transfer cell homogenate including cell debris to a cold microcentrifuge tube and agitate on a rotary shaker at 4°C for at least 15 minutes.

11.1.6 Centrifuge sample for 15 minutes at 4°C at 10,000 x g in a cold microcentrifuge to remove any insoluble material.

11.1.7 Collect supernatant and transfer to a clean pre-chilled tube and store on ice. Use lysates immediately to assay PNP activity.

11.1.8 OPTIONAL: small molecules such as xanthine, and hypoxanthine present in the samples will contribute to the background. The molecules can be removed by passing the
sample through a desalting column or by buffer exchange using a 10 kD spin column (ab93349). Use this modified sample for the assay.

11.2 **Tissue samples:**

11.2.1 Harvest the amount of tissue necessary for each assay (initial recommendation = 100 mg).

11.2.2 Wash tissue in cold PBS.

11.2.3 Suspend tissue in 300 µL of ice cold 1x PNP Assay Buffer containing protease inhibitor cocktail.

11.2.4 Homogenize tissue with a Dounce homogenizer sitting on ice, with 10 – 15 passes.

11.2.5 Incubate sample on ice for 15 – 30 minutes.

11.2.6 Centrifuge samples for 15 minutes at 4°C at 10,000 X g using a cold micro centrifuge to remove any insoluble material.

11.2.7 Collect supernatant and transfer to a clean pre-chilled tube and store on ice. Use lysates immediately to assay PNP activity.

11.2.8 OPTIONAL: small molecules such as xanthine, and hypoxanthine present in the samples will contribute to the background. The molecules can be removed by passing the sample through a desalting column or by buffer exchange using a 10 kD spin column (ab93349). Use this modified sample for the assay.

11.3 **Purified protein:**

Ready to use as supplied.

NOTE: We suggest using different volumes of sample to ensure readings are within the Standard Curve range.
12. **ASSAY PROCEDURE and DETECTION**

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- It is recommended to assay all standards, controls and samples in duplicate.

12.1 **Set up Reaction wells:**
- Standard wells = 50 µL standard dilutions.
- Sample wells = 2 – 50 µL samples (adjust volume to 50 µL/well with 1x PNP Assay Buffer).
- Background control sample wells = 2 - 50 µL samples (adjust volume to 50 µL/well 1x PNP Assay Buffer). NOTE: use this background control well to ensure the small molecules are removed by the desalting or 10 kD Spin column.
- Positive control = 2 µL PNP Positive control (adjust volume to 50 µL/well with 1x PNP Assay Buffer).

12.2 **Reaction Mix:**
Prepare 50 µL of Reaction Mix for each reaction:

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
<th>Background Control Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP Assay Buffer (1X)</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>PNP Developer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PNP Substrate</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Mix enough reagents for the number of assays (samples and standards for reaction mix, background for background control) to be performed. Prepare a master mix of the Reaction Mix to ensure consistency. We recommend the following calculation:

\[X \text{ µL component} \times (\text{Number reactions} + 1) \]

12.3 Add 50 µL of Reaction Mix into each standard, sample and positive control sample wells. Mix well.

12.4 Add 50 µL of Background Reaction Mix to Background control sample well. Mix well.
12.5 Measure absorbance on a colorimetric microplate reader at OD = 293 nm in kinetic mode, every 2 – 3 minutes, for at least 30 minutes at room temperature.

NOTE: Sample incubation time can vary depending on Purine Nucleoside Phosphorylase (PNP) activity in the samples. We recommend measuring OD in a kinetic mode, and choosing two time points (T_1 and T_2) in the linear range (OD values A_1 and A_2 respectively) to calculate the PNP activity of the samples. The Standard Curve can be read in end point mode (i.e. at the end of incubation time).
13. **CALCULATIONS**

- Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiplying the concentration found by the appropriate dilution factor.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).

13.1 Average the duplicate reading for each standard and sample.

13.2 Subtract the mean absorbance value of the blank (Standard #1) from all standard and sample readings. This is the corrected absorbance.

13.3 Plot the corrected absorbance values for each standard as a function of the final concentration of hypoxanthine.

13.4 Draw the best smooth curve through these points to construct the standard curve. Calculate the trend line equation based on your standard curve data (use the equation that provides the most accurate fit).

13.5 Activity of PNP is calculated as:

\[\Delta OD_{293nm} = (A_2 - A_{2BG}) - (A_1 - A_{1BG}) \]

Where:

- \(A_1 \) is the sample reading at time \(T_1 \).
- \(A_{1BG} \) is the background control sample reading at time \(T_1 \).
- \(A_2 \) is the sample reading at time \(T_2 \).
- \(A_{2BG} \) is the background control sample reading at time \(T_2 \).

13.6 Use the \(\Delta OD_{293nm} \) to obtain \(B \) nmol of Hypoxanthine generated by PNP during the reaction time (\(\Delta T = T_2 - T_1 \)).

13.7 Activity of PNP in the test samples is calculated as:

\[
PNP \text{ Activity } = \left(\frac{B}{\Delta T \times \mu g \text{ of protein}} \right) \times D = \text{nmol/min/\mu g} = \text{mU/\mu g}
\]
Where:

- $B =$ Amount of Hypoxanthine from Standard Curve (nmol).
- $\Delta T =$ Reaction time (min).
- μg of protein = Original amount of sample protein added into the reaction well (in μg).
- $D =$ Sample dilution factor.

Sample PNP Activity can also be expressed as U/mg (μmoles/min hypoxanthine generated per mg) of protein.

Unit Definition:

1 Unit PNP activity = amount of Purine Nucleoside Phosphorylase that hydrolyzes inosine to yield 1.0 μmol of hypoxanthine/min. at room temperature.
14. **TYPICAL DATA**

TYPICAL STANDARD CURVE – Data provided for *demonstration purposes only*. A new standard curve must be generated for each assay performed.

Figure 1. Typical Hypoxanthine Standard calibration curve.

Figure 2. Purine Nucleoside Phosphorylase Activity in Jurkat cell (T-lymphocyte) lysate (3 µg), rat brain lysate (19 µg), and Positive Control.
Figure 3. PNP specific activity in Jurkat cell lysate and rat brain lysate.
15. **QUICK ASSAY PROCEDURE**

NOTE: This procedure is provided as a quick reference for experienced users. Follow the detailed procedure when performing the assay for the first time.

- Prepare standard, positive control and prepare enzyme mix (aliquot if necessary); get equipment ready.
- Prepare appropriate standard curve.
- Prepare samples in duplicate (find optimal dilutions to fit standard curve readings).
- Set up plate for standard (50 µL), samples (50 µL), positive control (50 µL) and background wells (50 µL).
- Prepare PNP Reaction Mix (Number reactions + 1).

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
<th>Background Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNP Assay Buffer (1X)</td>
<td>46</td>
<td>48</td>
</tr>
<tr>
<td>PNP Developer</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>PNP Substrate</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

- Add 50 µL of PNP Reaction Mix to the standard, positive control and sample wells.
- Add 50 µL of Background Reaction Mix into the background sample control wells. Mix well.
- Read absorbance at OD = 293 nm in a microplate reader in kinetic mode at room temperature for at least 30 minutes.
16. **TROUBLESHOOTING**

<table>
<thead>
<tr>
<th>Problem</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay not working</td>
<td>Use of ice-cold buffer</td>
<td>Buffers must be at room temperature</td>
</tr>
<tr>
<td></td>
<td>Plate read at incorrect wavelength</td>
<td>Check the wavelength and filter settings of instrument</td>
</tr>
<tr>
<td></td>
<td>Use of a different 96-well plate</td>
<td>Colorimetric: Clear plates Fluorometric: black wells/clear bottom plate</td>
</tr>
<tr>
<td>Sample with erratic readings</td>
<td>Samples not deproteinized (if indicated on protocol)</td>
<td>Use PCA precipitation protocol for deproteinization</td>
</tr>
<tr>
<td></td>
<td>Cells/tissue samples not homogenized completely</td>
<td>Use Dounce homogenizer, increase number of strokes</td>
</tr>
<tr>
<td></td>
<td>Samples used after multiple freeze/thaw cycles</td>
<td>Aliquot and freeze samples if needed to use multiple times</td>
</tr>
<tr>
<td></td>
<td>Use of old or inappropriately stored samples</td>
<td>Use fresh samples or store at -80°C (after snap freeze in liquid nitrogen) till use</td>
</tr>
<tr>
<td></td>
<td>Presence of interfering substance in the sample</td>
<td>Check protocol for interfering substances; deproteinize samples</td>
</tr>
<tr>
<td>Lower/Higher readings in samples and Standards</td>
<td>Improperly thawed components</td>
<td>Thaw all components completely and mix gently before use</td>
</tr>
<tr>
<td></td>
<td>Allowing reagents to sit for extended times on ice</td>
<td>Always thaw and prepare fresh reaction mix before use</td>
</tr>
<tr>
<td></td>
<td>Incorrect incubation times or temperatures</td>
<td>Verify correct incubation times and temperatures in protocol</td>
</tr>
<tr>
<td>Problem</td>
<td>Cause</td>
<td>Solution</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Standard readings do not follow a linear pattern</td>
<td>Pipetting errors in standard or reaction mix</td>
<td>Avoid pipetting small volumes (< 5 µL) and prepare a master mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the tubes</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Always refer to dilutions on protocol</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Measured at incorrect wavelength</td>
<td>Check equipment and filter setting</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>Troubleshoot if it interferes with the kit</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/ below the linear range</td>
<td>Concentrate/ Dilute sample so it is within the linear range</td>
</tr>
</tbody>
</table>
17. INTERFERENCES

These chemicals or biological materials will cause interferences in this assay causing compromised results or complete failure.

- RIPA buffer – it contains SDS which can destroy/decrease the activity of the enzyme.
- Small molecules such as xanthine and hypoxanthine – can cause background signal.
18. FAQ
UK, EU and ROW
Email: technical@abcam.com | Tel: +44-(0)1223-696000

Austria
Email: wissenschaftlicherdienst@abcam.com | Tel: 019-288-259

France
Email: supportscientifique@abcam.com | Tel: 01-46-94-62-96

Germany
Email: wissenschaftlicherdienst@abcam.com | Tel: 030-896-779-154

Spain
Email: soportecientifico@abcam.com | Tel: 911-146-554

Switzerland
Email: technical@abcam.com
Tel (Deutsch): 0435-016-424 | Tel (Français): 0615-000-530

US and Latin America
Email: us.technical@abcam.com | Tel: 888-77-ABCAM (22226)

Canada
Email: ca.technical@abcam.com | Tel: 877-749-8807

China and Asia Pacific
Email: hk.technical@abcam.com | Tel: 108008523689 (中國聯通)

Japan
Email: technical@abcam.co.jp | Tel: +81-(0)3-6231-0940

www.abcam.com | www.abcam.cn | www.abcam.co.jp

Copyright © 2015 Abcam, All Rights Reserved. The Abcam logo is a registered trademark.
All information / detail is correct at time of going to print.