ab211112
Aldo-Keto Reductase (AKR) Activity Assay Kit (Colorimetric)

For the rapid, sensitive and accurate measurement of Aldo-Keto Reductase (AKR) activity in a variety of biological samples.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview .. 1
2. Protocol Summary ... 2
3. Precautions ... 3
4. Storage and Stability ... 3
5. Limitations .. 4
6. Materials Supplied ... 4
7. Materials Required, Not Supplied 5
8. Technical Hints ... 6
9. Reagent Preparation ... 7
10. Standard Preparation .. 8
11. Sample Preparation ... 9
12. Assay Procedure ... 10
13. Calculations .. 12
14. Typical Data .. 14
15. Quick Assay Procedure 16
16. Troubleshooting .. 17
17. Notes ... 19
1. Overview

Aldo-Keto Reductase (AKR) Activity Assay Kit (Colorimetric) (ab211112) provides a convenient tool for sensitive detection of Aldo-Keto Reductase (AKR) activity in animal tissue and cells, as well as biological fluids such as serum or plasma. The assay is based on the ability of AKR to reduce a general substrate and convert NADP⁺ to NADPH, which reacts with the AKR probe to generate color that can be detected at OD 450 nm. The intensity of the color is proportional to the activity of AKR in the sample.

This assay can detect as low as 1 μU of AKR activity in samples. It has been validated with AKR1B10, AKR1C1 and AKR1C3.

\[
\text{Substrate} \rightarrow \text{Intermediate} \rightarrow \text{Color (OD 450 nm)}
\]

Aldo-keto Reductases (AKRs) are a superfamily of NAD(P)H linked oxidoreductases which contains more than 190 members and are present in nearly all phyla. They are mainly monomeric soluble proteins (34 – 37 kD) and their common is to oxidize/reduce aldehydes or ketones to their corresponding primary or secondary alcohols. Due to their broad substrate specificity, AKRs play roles in intermediary metabolism, biosynthesis and detoxification.

In humans, AKRs are not only involved in carbonyl metabolism, but they also regulate signaling through nuclear receptors which leads to chemical carcinogenesis. Many studies demonstrate increasing expression of AKRs in cancers such as lung, liver and colon cancers.
2. Protocol Summary

Standard curve preparation

↓

Sample preparation

↓

Add reaction mix

↓

Measure absorbance at OD450 nm in kinetic mode for 10 – 120 minutes at 37°C

For kinetic mode detection, incubation time given in this summary is for guidance only
3. Precautions

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.
- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.
- Reagents should be treated as possible mutagens and should be handled with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.
- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipette by mouth. Do not eat, drink or smoke in the laboratory areas.
- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. Storage and Stability

Store kit at -20°C in the dark immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Materials Supplied section.

Aliquot components in working volumes before storing at the recommended temperature.

⚠️ Note: Reconstituted components are stable for 2 months.
5. Limitations

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

6. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage temperature (before prep)</th>
<th>Storage temperature (after prep)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR Assay Buffer</td>
<td>25 mL</td>
<td>-20°C</td>
<td>4°C / -20°C</td>
</tr>
<tr>
<td>AKR Substrate</td>
<td>15 mL</td>
<td>-20°C</td>
<td>4°C / -20°C</td>
</tr>
<tr>
<td>AKR Probe</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>AKR Positive Control</td>
<td>10 µL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>NADPH Standard</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>
7. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Multi-well spectrophotometer.
- MilliQ water or other type of double distilled water (ddH₂O)
- Cold PBS
- Anhydrous DMSO (reagent grade)
- Pipettes and pipette tips, including multi-channel pipette
- Assorted glassware for the preparation of reagents and buffer solutions
- Tubes for the preparation of reagents and buffer solutions
- 96-well clear flat bottom plate.
- Dounce homogenizer (if using tissue)
8. Technical Hints

- This kit is sold based on number of tests. A “test” simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
- Selected components in this kit are supplied in surplus amount to account for additional dilutions, evaporation, or instrumentation settings where higher volumes are required. They should be disposed of in accordance with established safety procedures.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Ensure all reagents and solutions are at the appropriate temperature before starting the assay.
- Samples which generate values that are greater than the most concentrated standard should be further diluted in the appropriate sample dilution buffer.
- Make sure all necessary equipment is switched on and set at the appropriate temperature.
9. Reagent Preparation

Briefly centrifuge small vials at low speed prior to opening.

9.1 AKR Assay Buffer (25 mL):

Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C or -20°C.

9.2 AKR Substrate (15 mL):

Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C or -20°C.

9.3 AKR Probe (1 vial):

Reconstitute with 900 µL of ddH₂O. Pipette up and down several times to completely dissolve the pellet; do not vortex. Aliquot probe so that you have enough volume to perform the desired number of assays. Store at −20°C. Use within two months. Keep on ice while in use.

9.4 AKR Positive Control (10 µL):

Ready to use as supplied. Aliquot positive control so that you have enough volume to perform the desired number of assays. Store at −20°C. Use within two months. Keep on ice while in use.

9.5 NADPH Standard (1 vial):

Reconstitute NADPH Standard in 200 µL DMSO to generate 1 mM NADPH Standard solution. Aliquot standard so that you have enough volume to perform the desired number of assays. Store at −20°C. Use within 2 months. Keep on ice while in use.
10. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Discard working standard dilutions after use as they do not store well.

10.1 Prepare a 0.2 mM NADPH working standard solution (1:5 dilution) by adding 65 μL 1 mM NADPH Standard to 260 μL Assay Buffer.

10.2 Using 0.2 mM NADPH working standard, prepare standard curve dilution as described in the table in a microplate or microcentrifuge tubes:

<table>
<thead>
<tr>
<th>Standard #</th>
<th>NADPH 0.2 mM Standard (μL)</th>
<th>Assay Buffer (μL)</th>
<th>Final volume standard in well (μL)</th>
<th>End amount NADPH in well (nmol/well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>300</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>270</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>240</td>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>90</td>
<td>210</td>
<td>100</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>120</td>
<td>180</td>
<td>100</td>
<td>8</td>
</tr>
</tbody>
</table>

Each dilution has enough amount of standard to set up duplicate readings (2 x 100 μL).
11. Sample Preparation

General sample information:
- We recommend performing several dilutions of your sample to ensure the readings are within the standard value range.
- We recommend that you use fresh samples. If you cannot perform the assay at the same time, we suggest that you complete the Sample Preparation step before storing the samples. Alternatively, if that is not possible, we suggest that you snap freeze your samples in liquid nitrogen upon extraction and store them immediately at -80°C. When you are ready to test your samples, thaw them on ice. Be aware however that this might affect the stability of your samples and the readings can be lower than expected.

11.1 Cell lysates:
11.1.1 Harvest the amount of cells necessary for each assay (initial recommendation: 1×10^6 cells)
11.1.2 Wash cells in 200 µL ice-cold Assay Buffer.
11.1.3 Centrifuge sample for 10 minutes at 4°C at 13,000 xg using a cold microcentrifuge to remove any insoluble material.
11.1.4 Collect supernatant and transfer to a new tube.
11.1.5 Keep on ice.

11.2 Tissue lysates:
11.2.1 Harvest the amount of tissue necessary for each assay (initial recommendation ~10 - 50 mg)
11.2.2 Wash tissue in cold PBS.
11.2.3 Homogenize tissue in 200 µL ice-cold Assay Buffer with a Dounce homogenizer sitting on ice, with 10 – 15 passes.
11.2.4 Centrifuge sample for 10 minutes at 4°C at 13,000 xg using a cold microcentrifuge to remove any insoluble material.
11.2.5 Collect supernatant and transfer to a new tube.
11.2.6 Keep on ice.

11.3 Serum samples:
Serum samples can be tested directly. No preparation is required.

△ Note: We suggest using different volumes of sample to ensure readings are within the standard curve range.
12. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.
- Prepare all reagents, working standards, and samples as directed in the previous sections.

Δ Note: If you suspect your samples contain substances that can generate background, set up Sample Background Controls to correct for background noise.

12.1 Plate Loading:

- Standard wells = 100 µL standard dilutions.
- Sample wells = 2-50 µL samples, (adjust volume for all samples to 100 µL/well with Assay Buffer).

Δ Note: for serum, use 5-50 µL per well.

- Sample Background Control wells = 2-50 µL samples (adjust volume to 100 µL/well with Assay Buffer).

Δ Note: for serum, use 5-50 µL per well.

- Positive Control = 2 - 5 µL AKR Positive Control (adjust volume to 100 µL/well with Assay Buffer).

12.2 AKR Reaction Mix:

12.2.1 Prepare 100 µL of Reaction Mix and Background Control Mix for each reaction. Mix enough reagents for the number of assays to be performed. Prepare a master mix to ensure consistency.

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
<th>Background Control Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR Buffer</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>AKR Substrate</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>AKR Probe</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

12.2.2 Add 100 µL of Reaction Mix into each standard, sample and positive control well.

12.2.3 Add 100 µl of Background Control Mix to Sample Background Control wells.
12.2.4 Mix well.

12.3 Measurement:
12.3.1 Measuring immediately absorbance at 450 nm in a kinetic mode for 10-120 minutes at 37°C.

⚠️ Note: The NADPH Standard Curve can be read in Endpoint mode (after 10 minutes of incubation).

⚠️ Note: Sample incubation time depends on the AKR activity in them. We recommend measuring the OD in a kinetic mode, and choosing two time points (T1 and T2) in the linear range of the standard curve to calculate the AKR activity of the samples. The NADPH Standard curve can be read in endpoint mode (ie. at the end of incubation time).
13. Calculations

- Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiply the concentration found by the appropriate dilution factor.
- Use only the linear rate for calculation.

13.1 Standard curve calculation:

13.1.1 Subtract the mean absorbance value of the blank (Standard #1) from all standard readings. This is the corrected absorbance.

13.1.2 Average the duplicate reading for each standard.

13.1.3 Plot standard curve readings and draw the line of the best fit to construct the standard curve (most plate reader software or Excel can do this step). Calculate the trend line equation based on your standard curve data (use the equation that provides the most accurate fit).

13.2 Measurement of Aldo-Keto Reductase activity in the sample:

13.2.1 For all reaction wells, choose two time points (T1 and T2) in the linear phase of the reaction progress curves and obtain the corresponding absorbance values at those points (OD1 and OD2).

13.2.2 Calculate ∆OD450 as follows:

\[\Delta OD_{450} = OD_2 - OD_1 \]

13.2.3 If sample background control reading is significant, subtract sample background control reading from sample reading.

13.2.4 Apply the ∆OD to the NADPH Standard Curve to get B nmol of NADPH generated during the reaction time.

13.3 AKR activity (nmol/min/mL or mU/mL) in the test samples is calculated as:

\[AKR \text{ Activity} = \left(\frac{B}{\Delta T \times V} \right) \times D \]
Where:
B = amount of NADPH in sample well calculated from standard curve (nmol).
ΔT = linear phase reaction time $T_2 - T_1$ (minutes).
V = original sample volume added into the reaction well (μL)
D = sample dilution factor.

Unit definition:
1 Unit of Aldo-Keto Reductase activity = amount of enzyme that generates 1.0 μmol of NADPH per min at pH8.0 at 37°C.
14. Typical Data

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Graph showing NADPH standard curve](image)

Figure 1. Typical NADPH standard curve.
Figure 2. Kinetic curves showing AKR activity detection in increase amounts of positive control included in the kit (μL/assay).

Figure 3. AKR specific activity in human tissue lysates and cell line lysates. Serial dilutions were tested to ensure the readings were within the linear range of the Standard Curve.
15. Quick Assay Procedure

△ Note: this procedure is provided as a quick reference for experienced users. Follow the detailed procedure when performing the assay for the first time.

- Prepare reagents and aliquot; get equipment ready.
- Prepare standard dilution [2 – 8 nmol/well].
- Prepare samples in optimal dilutions to fit standard curve readings.
- Set up plate in duplicate for standard (100 µL), sample background control samples (100 µL), sample (100 µL) and positive control wells (100 µL).
- Prepare a master mix for AKR Reaction Mix and Background Control Mix:

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
<th>Background Control Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKR Buffer</td>
<td>0</td>
<td>92</td>
</tr>
<tr>
<td>AKR Substrate</td>
<td>92</td>
<td>0</td>
</tr>
<tr>
<td>AKR Probe</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

- Add 100 µL Reaction mix to standard, sample and positive control wells.
- Add Background Control Mix to Sample Background Control wells.
- Measure absorbance immediately at OD = 450 nm in a kinetic mode for 10-120 minutes at 37 °C.
16. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay not working</td>
<td>Use of ice-cold buffer</td>
<td>Buffers must be at assay temperature</td>
</tr>
<tr>
<td></td>
<td>Plate read at incorrect wavelength</td>
<td>Check the wavelength and filter settings of instrument</td>
</tr>
</tbody>
</table>
| | Use of a different microplate | Colorimetric: clear plates
Fluorometric: black wells/clear bottom plates
Luminometric: white wells/clear bottom plates |
<p>| Sample with erratic readings | Cells/tissue samples not homogenized completely | Use Dounce homogenizer, increase number of strokes |
| | Samples used after multiple free/thaw cycles | Aliquot and freeze samples if needed to use multiple times |
| | Use of old or inappropriately stored samples | Use fresh samples or store at - 80°C (after snap freeze in liquid nitrogen) till use |
| | Presence of interfering substance in the sample | Check protocol for interfering substances |
| Lower/higher readings in samples and standards | Improperly thawed components | Thaw all components completely and mix gently before use |
| | Allowing reagents to sit for extended times on ice | Always thaw and prepare fresh reaction mix before use |
| | Incorrect incubation times or temperatures | Verify correct incubation times and temperatures in protocol |</p>
<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard readings do not follow a linear pattern</td>
<td>Pipetting errors in standard or reaction mix</td>
<td>Avoid pipetting small volumes (< 5 µL) and prepare a master mix whenever possible</td>
</tr>
<tr>
<td></td>
<td>Air bubbles formed in well</td>
<td>Pipette gently against the wall of the tubes</td>
</tr>
<tr>
<td></td>
<td>Standard stock is at incorrect concentration</td>
<td>Always refer to dilutions described in the protocol</td>
</tr>
<tr>
<td>Unanticipated results</td>
<td>Measured at incorrect wavelength</td>
<td>Check equipment and filter setting</td>
</tr>
<tr>
<td></td>
<td>Samples contain interfering substances</td>
<td>Troubleshoot if it interferes with the kit</td>
</tr>
<tr>
<td></td>
<td>Sample readings above/below the linear range</td>
<td>Concentrate/dilute sample so it is within the linear range</td>
</tr>
</tbody>
</table>
Technical Support

Copyright © 2017 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

Austria
wissenschaftlicherdienst@abcam.com | 019-288-259

France
supportscientifique@abcam.com | 01.46.94.62.96

Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154

Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com

UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
c.ca.technical@abcam.com | 877-749-8807

US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823

China
cn.technical@abcam.com | 400 921 0189 / +86 21 2070 0500

Japan
technical@abcam.co.jp | +81-(0)3-6231-0940

Singapore
sg.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450

New Zealand
nz.technical@abcam.com | +64-(0)9-909-7829