ab219047
Human CXCL9
SimpleStep ELISA® Kit

For the quantitative measurement of CXCL9 protein in human cell culture supernatants and cell and tissue extracts.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview 1
2. Protocol Summary 2
3. Precautions 3
4. Storage and Stability 3
5. Limitations 4
6. Materials Supplied 4
7. Materials Required, Not Supplied 5
8. Technical Hints 5
9. Reagent Preparation 7
10. Standard Preparation 8
11. Sample Preparation 10
12. Plate Preparation 13
13. Assay Procedure 14
14. Calculations 16
15. Typical Data 17
16. Typical Sample Values 19
17. Assay Specificity 23
18. Species Reactivity 24
19. Troubleshooting 25

Technical Support 26
1. Overview

CXCL9 *in vitro* SimpleStep ELISA® (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of CXCL9 protein in human cell culture supernatants, and cell and tissue extracts.

The SimpleStep ELISA® employs an affinity tag labeled capture antibody and a reporter conjugated detector antibody which immunocapture the sample analyte in solution. This entire complex (capture antibody/analyte/detector antibody) is in turn immobilized via immunoaffinity of an anti-tag antibody coating the well. To perform the assay, samples or standards are added to the wells, followed by the antibody mix. After incubation, the wells are washed to remove unbound material. TMB Development Solution is added and during incubation is catalyzed by HRP, generating blue coloration. This reaction is then stopped by addition of Stop Solution completing any color change from blue to yellow. Signal is generated proportionally to the amount of bound analyte and the intensity is measured at 450 nm. Optionally, instead of the endpoint reading, development of TMB can be recorded kinetically at 600 nm.

CXCL9 is a small cytokine belonging to the CXC chemokine subfamily that lacks an ELR motif in front of the first cysteine. CXCL9, also known as MIG (Monokine Induced by Gamma Interferon) is a T-cell chemoattractant, which is induced by Interferon Gamma. This subfamily also includes Interferon Gamma Induced Protein 10 (IP-10 or CXCL10) and Interferon Inducible T-cell Alpha Chemoattractant (I-TAC or CXCL11) whose genes are located near the gene for CXCL9 on human chromosome 4. CXCL9, IP-10 and I-TAC all elicit their chemotactic functions by interacting with the G protein coupled chemokine receptor CXCR3 (GPR9 or CD183).
2. Protocol Summary

Prepare all reagents, samples, and standards as instructed

\[\downarrow\]

Add 50 µL standard or sample to appropriate wells

\[\downarrow\]

Add 50 µL Antibody Cocktail to all wells

\[\downarrow\]

Incubate at room temperature for 1 hour

\[\downarrow\]

Aspirate and wash each well three times with 350 µL 1X Wash Buffer PT

\[\downarrow\]

Add 100 µL TMB Development Solution to each well and incubate for 10 minutes.

\[\downarrow\]

Add 100 µL Stop Solution and read OD at 450 nm
3. Precautions

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.
- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.
- Reagents should be treated as possible mutagens and should be handled with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.
- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipet by mouth. Do not eat, drink or smoke in the laboratory areas.
- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. Storage and Stability

Store kit at +4°C immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Materials Supplied section.
5. Limitations

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.

6. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human CXCL9 Capture Antibody 10X</td>
<td>600 µL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Human CXCL9 Detector Antibody 10X</td>
<td>600 µL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Human CXCL9 Lyophilized Recombinant Protein</td>
<td>2 Vials</td>
<td>+4°C</td>
</tr>
<tr>
<td>Antibody Diluent 4BI</td>
<td>6 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Wash Buffer PT 10X</td>
<td>20 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Cell Extraction Buffer PTR 5X</td>
<td>10 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Cell Extraction Enhancer Solution 50X</td>
<td>1 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>TMB Development Solution</td>
<td>12 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Stop Solution</td>
<td>12 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Sample Diluent NS</td>
<td>50 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Anti-tag coated microplate (12 x 8 well strips)</td>
<td>96 Wells</td>
<td>+4°C</td>
</tr>
<tr>
<td>Plate Seal</td>
<td>1</td>
<td>+4°C</td>
</tr>
</tbody>
</table>
7. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Microplate reader capable of measuring absorbance at 450 or 600 nm.
- Method for determining protein concentration (BCA assay recommended).
- Deionized water.
- Multi- and single-channel pipettes.
- Tubes for standard dilution.
- Plate shaker for all incubation steps.
- Optional: Phenylmethylsulfonyl Fluoride (PMSF) (or other protease inhibitors).

8. Technical Hints

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Complete removal of all solutions and buffers during wash steps is necessary to minimize background.
- As a guide, typical ranges of sample concentration for commonly used sample types are shown below in Sample Preparation (section 11).
- All samples should be mixed thoroughly and gently.
- Avoid multiple freeze/thaw of samples.
- Incubate ELISA plates on a plate shaker during all incubation steps.
- When generating positive control samples, it is advisable to change pipette tips after each step.
- The provided Antibody Diluents and Sample Diluents contain protease inhibitor aprotinin. Additional protease inhibitors can be added if required.
- The provided Cell Extraction Buffer 5X contains phosphatase inhibitors and protease inhibitor aprotinin. Additional protease inhibitors can be added if required.
- The provided Cell Extraction Enhancer Solution 50X may precipitate when stored at +4°C. To dissolve, warm briefly at +37°C and mix gently. The Cell Extraction Enhancer Solution 50X can be stored at room temperature to avoid precipitation.
- To avoid high background always add samples or standards to the well before the addition of the antibody cocktail.
- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
9. Reagent Preparation

- Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells. The sample volumes below are sufficient for 48 wells (6 x 8-well strips); adjust volumes as needed for the number of strips in your experiment.

- Prepare only as much reagent as is needed on the day of the experiment. Capture and Detector Antibodies have only been tested for stability in the provided 10X formulations.

- Sample Diluent 25BP may contain precipitate, this is normal. If precipitate is not dissolved by gentle mixing, the precipitate may be dissolved by gentle warming and mixing at 37°C for 10 minutes. If precipitate remains, gently spin down and avoid visible precipitates when pipetting.

9.1 1X Cell Extraction Buffer PTR (For cell and tissue extracts only):
Prepare 1X Cell Extraction Buffer PTR by diluting Cell Extraction Buffer PTR 5X to 1X with deionized water. To make 10 mL 1X Cell Extraction Buffer PTR combine 8 mL deionized water and 2 mL Cell Extraction Buffer PTR 5X. Mix thoroughly and gently. If required protease inhibitors can be added.

9.2 1X Wash Buffer PT:
Prepare 1X Wash Buffer PT by diluting Wash Buffer PT 10X with deionized water. To make 50 mL 1X Wash Buffer PT combine 5 mL Wash Buffer PT 10X with 45 mL deionized water. Mix thoroughly and gently.

9.3 Antibody Cocktail:
Prepare Antibody Cocktail by diluting the capture and detector antibodies in Antibody Diluent 4BI. To make 3 mL of the Antibody Cocktail combine 300 µL 10X Capture Antibody and 300 µL 10X Detector Antibody with 2.4 mL Antibody Diluent 4BI. Mix thoroughly and gently.
10. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Discard working standard dilutions after use as they do not store well.
- The following section describes the preparation of a standard curve for duplicate measurements (recommended).

10.1 For cell and tissue extract samples measurements follow these instructions:

IMPORTANT: If the protein standard vial has a volume identified on the label, reconstitute the CXCL9 lyophilized protein standard by adding that volume of 1X Cell Extraction Buffer PTR indicated on the label. Alternatively, if the vial has a mass identified, reconstitute the CXCL9 lyophilized protein standard by adding 500 µL 1X Cell Extraction Buffer PTR. Hold at room temperature for 10 minutes and mix gently. This is the 3,000 pg/mL Standard #1 Solution.

10.2 Label seven tubes, Standards 2–8.

10.3 Add 150 µL of 1X Cell Extraction Buffer PTR into numbers 2-8.

10.4 Use the Standard #1 to prepare the following dilution series. Standard #8 contains no protein and is the Blank control:

```
150 µL 150 µL 150 µL 150 µL 150 µL 150 µL 150 µL
3,000 pg/ml 1,500 pg/ml 750 pg/ml 375 pg/ml 187.5 pg/ml 93.75 pg/ml 46.88 pg/ml 0 pg/ml
```
10.1 For cell culture supernatant samples follow these instructions:

10.1.1 **IMPORTANT:** If the protein standard vial has a volume identified on the label, reconstitute the CXCL9 lyophilized protein standard by adding that volume of Sample Diluent NS indicated on the label. Alternatively, if the vial has a mass identified, reconstitute the CXCL9 lyophilized protein standard by adding 500 µL Sample Diluent NS. Hold at room temperature for 10 minutes and mix gently. This is the 3,000 pg/mL **Stock Standard** Solution.

10.1.2 Label eight tubes, Standards 1–8.

10.1.3 Add 120 µL of Sample Diluent NS into tube number 1 and 150 µL of Sample Diluent NS into numbers 2-8.

10.1.4 Use the Stock Standard to prepare the following dilution series. Standard #8 contains no protein and is the Blank control:

```
<table>
<thead>
<tr>
<th>Tube</th>
<th>Dilution</th>
<th>Protein Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>180 µL</td>
<td>3,000 pg/mL</td>
</tr>
<tr>
<td>2</td>
<td>150 µL</td>
<td>1,800 pg/mL</td>
</tr>
<tr>
<td>3</td>
<td>150 µL</td>
<td>900 pg/mL</td>
</tr>
<tr>
<td>4</td>
<td>150 µL</td>
<td>450 pg/mL</td>
</tr>
<tr>
<td>5</td>
<td>150 µL</td>
<td>225 pg/mL</td>
</tr>
<tr>
<td>6</td>
<td>150 µL</td>
<td>112.5 pg/mL</td>
</tr>
<tr>
<td>7</td>
<td>150 µL</td>
<td>56.25 pg/mL</td>
</tr>
<tr>
<td>8</td>
<td>150 µL</td>
<td>28.13 pg/mL</td>
</tr>
<tr>
<td></td>
<td>150 µL</td>
<td>0 pg/mL</td>
</tr>
</tbody>
</table>
```
11. Sample Preparation

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHA-M Stimulated PBMC Cell Culture Supernatant (2 days)</td>
<td>0.16 – 2.5%</td>
</tr>
<tr>
<td>Unstimulated PBMC Cell Culture Supernatant (2 days)</td>
<td>6.25 – 100% (Neat)</td>
</tr>
<tr>
<td>PHA-M Stimulated PBMC Cell (2 days) Extract</td>
<td>12.5 – 200 µg/mL</td>
</tr>
<tr>
<td>Thyroid Tissue Extract</td>
<td>31.25 – 500 µg/mL</td>
</tr>
</tbody>
</table>

11.1 Cell Culture Supernatants:

Centrifuge cell culture media at 2,000 x g for 10 minutes to remove debris. Collect supernatants and assay or dilute samples into Sample Diluent NS and assay. Store un-diluted samples at -20°C or below. Avoid repeated freeze-thaw cycles.
11.2 Preparation of extracts from cell pellets:
11.2.1 Collect non-adherent cells by centrifugation or scrape to collect adherent cells from the culture flask. Typical centrifugation conditions for cells are 500 x g for 5 minutes at 4°C.
11.2.2 Rinse cells twice with PBS.
11.2.3 Solubilize pellet at 2x10^7 cell/mL in chilled 1X Cell Extraction Buffer PTR.
11.2.4 Incubate on ice for 20 minutes.
11.2.5 Centrifuge at 18,000 x g for 20 minutes at 4°C.
11.2.6 Transfer the supernatants into clean tubes and discard the pellets.
11.2.7 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.
11.2.8 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.

11.3 Preparation of extracts from adherent cells by direct lysis (alternative protocol):
11.3.1 Remove growth media and rinse adherent cells 2 times in PBS.
11.3.2 Solubilize the cells by addition of chilled 1X Cell Extraction Buffer PTR directly to the plate (use 750 µL - 1.5 mL 1X Cell Extraction Buffer PTR per confluent 15 cm diameter plate).
11.3.3 Scrape the cells into a microfuge tube and incubate the lysate on ice for 15 minutes.
11.3.4 Centrifuge at 18,000 x g for 20 minutes at 4°C.
11.3.5 Transfer the supernatants into clean tubes and discard the pellets.
11.3.6 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.
11.3.7 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.
11.4 Preparation of extracts from tissue homogenates:

11.4.1 Tissue lysates are typically prepared by homogenization of tissue that is first minced and thoroughly rinsed in PBS to remove blood (Dounce homogenizer recommended).

11.4.2 Homogenize 100 to 200 mg of wet tissue in 500 µL – 1 mL of chilled 1X Cell Extraction Buffer PTR. For lower amounts of tissue adjust volumes accordingly.

11.4.3 Incubate on ice for 20 minutes.

11.4.4 Centrifuge at 18,000 x g for 20 minutes at 4°C.

11.4.5 Transfer the supernatants into clean tubes and discard the pellets.

11.4.6 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.

11.4.7 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.
12. Plate Preparation

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused plate strips should be immediately returned to the foil pouch containing the desiccant pack, resealed and stored at 4°C.
- For each assay performed, a minimum of two wells must be used as the zero control.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Differences in well absorbance or “edge effects” have not been observed with this assay.
13. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections.

13.2 Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, reseal and return to 4°C storage.

13.3 Add 50 µL of all sample or standard to appropriate wells.

13.4 Add 50 µL of the Antibody Cocktail to each well.

13.5 Seal the plate and incubate for 1 hour at room temperature on a plate shaker set to 400 rpm.

13.6 Wash each well with 3 x 350 µL 1X Wash Buffer PT. Wash by aspirating or decanting from wells then dispensing 350 µL 1X Wash Buffer PT into each well. Wash Buffer PT should remain in wells for at least 10 seconds. Complete removal of liquid at each step is essential for good performance. After the last wash invert the plate and tap gently against clean paper towels to remove excess liquid.

13.7 Add 100 µL of TMB Development Solution to each well and incubate for 10 minutes in the dark on a plate shaker set to 400 rpm.

Given variability in laboratory environmental conditions, optimal incubation time may vary between 5 and 20 minutes.

*Note: The addition of Stop Solution will change the color from blue to yellow and enhance the signal intensity about 3X. To avoid signal saturation, proceed to the next step before the high concentration of the standard reaches a blue color of O.D.600 equal to 1.0.

13.8 Add 100 µL of Stop Solution to each well. Shake plate on a plate shaker for 1 minute to mix. Record the OD at 450 nm. This is an endpoint reading.

13.9 Alternative to 13.7 – 13.8: Instead of the endpoint reading at 450 nm, record the development of TMB Substrate kinetically. Immediately after addition of TMB Development Solution begin recording the blue color development with elapsed
time in the microplate reader prepared with the following settings:

<table>
<thead>
<tr>
<th>Mode</th>
<th>Kinetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength:</td>
<td>600 nm</td>
</tr>
<tr>
<td>Time:</td>
<td>up to 20 min</td>
</tr>
<tr>
<td>Interval:</td>
<td>20 sec - 1 min</td>
</tr>
<tr>
<td>Shaking:</td>
<td>Shake between readings</td>
</tr>
</tbody>
</table>

⚠️ **Note:** that an endpoint reading can also be recorded at the completion of the kinetic read by adding 100 µL Stop Solution to each well and recording the OD at 450 nm.

13.10 Analyze the data as described below.
14. Calculations

14.1 Calculate the average absorbance value for the blank control (zero) standards. Subtract the average blank control standard absorbance value from all other absorbance values.

14.2 Create a standard curve by plotting the average blank control subtracted absorbance value for each standard concentration (y-axis) against the target protein concentration (x-axis) of the standard. Use graphing software to draw the best smooth curve through these points to construct the standard curve.

△ Note: Most microplate reader software or graphing software will plot these values and fit a curve to the data. A four parameter curve fit (4PL) is often the best choice; however, other algorithms (e.g. linear, semi-log, log/log, 4 parameter logistic) can also be tested to determine if it provides a better curve fit to the standard values.

14.3 Determine the concentration of the target protein in the sample by interpolating the blank control subtracted absorbance values against the standard curve. Multiply the resulting value by the appropriate sample dilution factor, if used, to obtain the concentration of target protein in the sample.

14.4 Samples generating absorbance values greater than that of the highest standard should be further diluted and reanalyzed. Similarly, samples which measure at an absorbance values less than that of the lowest standard should be retested in a less dilute form.
15. Typical Data

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.

![Typical standard curve](image)

Standard Curve Measurements

<table>
<thead>
<tr>
<th>Concentration (pg/mL)</th>
<th>O.D 450 nm</th>
<th>Mean O.D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>0.072</td>
<td>0.070</td>
</tr>
<tr>
<td>28.13</td>
<td>0.137</td>
<td>0.143</td>
</tr>
<tr>
<td>56.25</td>
<td>0.209</td>
<td>0.195</td>
</tr>
<tr>
<td>112.5</td>
<td>0.303</td>
<td>0.333</td>
</tr>
<tr>
<td>225</td>
<td>0.747</td>
<td>0.792</td>
</tr>
<tr>
<td>450</td>
<td>1.413</td>
<td>1.630</td>
</tr>
<tr>
<td>900</td>
<td>2.752</td>
<td>2.906</td>
</tr>
<tr>
<td>1,800</td>
<td>3.704</td>
<td>3.806</td>
</tr>
</tbody>
</table>

Figure 1. Example of human CXCL9 standard curve in Sample Diluent NS. The CXCL9 standard curve was prepared as described in Section 10. Raw data values are shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
Figure 2. Example of human CXCL9 standard curve in 1X Cell Extraction Buffer PTR. The CXCL9 standard curve was prepared as described in Section 10. Raw data values are shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
16. Typical Sample Values

SENSITIVITY –
The MDD was determined by calculating the mean of zero standard replicates and adding 2 standard deviations then extrapolating the corresponding concentration.

<table>
<thead>
<tr>
<th>Sample Diluent Buffer</th>
<th>n=</th>
<th>Minimal Detectable Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample Diluent NS</td>
<td>32</td>
<td>5.0 pg/mL</td>
</tr>
<tr>
<td>1X Cell Extraction Buffer PTR</td>
<td>32</td>
<td>16.6 pg/mL</td>
</tr>
</tbody>
</table>

RECOVERY –
Three concentrations of recombinant human CXCL9 protein were spiked in duplicate to the indicated biological matrix to evaluate signal recovery in the working range of the assay.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Average % Recovery</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Unstimulated PBMC Cell Culture Supernatant (2 days)</td>
<td>90</td>
<td>86 - 92</td>
</tr>
<tr>
<td>500 µg/mL Thyroid Tissue Extract</td>
<td>109</td>
<td>104 - 116</td>
</tr>
</tbody>
</table>
Linearity of Dilution

Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.

Native CXCL9 was measured in the following biological samples in a 2-fold dilution series. Cell culture supernatants (SN) sample dilutions are made in Sample Diluent NS. Cell and tissue extracts sample dilutions are made in 1X Cell Extraction Buffer PTR.

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Interpolated value</th>
<th>2.5% PHA-M Stimulated PBMC SN (2 days)</th>
<th>100% Unstimulated PBMC SN (2 days)</th>
<th>200 µg/mL PHA-M Stimulated PBMC Extract</th>
<th>500 µg/mL Thyroid Tissue Extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undiluted</td>
<td>pg/mL</td>
<td>572.2</td>
<td>1491</td>
<td>1065</td>
<td>718.5</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>pg/mL</td>
<td>266.6</td>
<td>894.0</td>
<td>526.2</td>
<td>353.8</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>93</td>
<td>120</td>
<td>99</td>
<td>98</td>
</tr>
<tr>
<td>4</td>
<td>pg/mL</td>
<td>123.1</td>
<td>403.5</td>
<td>258.4</td>
<td>214.3</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>86</td>
<td>108</td>
<td>97</td>
<td>119</td>
</tr>
<tr>
<td>8</td>
<td>pg/mL</td>
<td>60.79</td>
<td>191.3</td>
<td>108.5</td>
<td>96.73</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>85</td>
<td>103</td>
<td>81</td>
<td>108</td>
</tr>
<tr>
<td>16</td>
<td>pg/mL</td>
<td>29.46</td>
<td>103.3</td>
<td>58.05</td>
<td>51.56</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>82</td>
<td>111</td>
<td>87</td>
<td>115</td>
</tr>
</tbody>
</table>
PRECISION –
Mean coefficient of variations of interpolated values from PHA-M stimulated PBMC supernatant within the working range of the assay.

<table>
<thead>
<tr>
<th></th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n =</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>CV(%)</td>
<td>3.4</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Figure 3. Interpolated concentrations of native CXCL9 in PHA-M stimulated and unstimulated human PBMC cell culture supernatant (2 days) samples. The concentrations of CXCL9 were measured in duplicates, interpolated from the CXCL9 standard curves and corrected for sample dilution. Undiluted samples are as follows: PHA-M stimulated PBMC supernatant 2.5% and unstimulated PBMC supernatant 100% (neat). The interpolated dilution factor corrected values are plotted (mean +/- SD, n=2). The mean CXCL9 concentration was determined to be 20.4 ng/mL in neat PHA-M stimulated PBMC supernatant and 1.62 ng/mL in neat unstimulated PBMC supernatant.
Figure 4. Interpolated concentrations of native CXCL9 in PHA-M stimulated human PBMC cell extract based on a 200 μg/mL extract load and human thyroid tissue extract based on a 500 μg/mL extract load. The concentrations of CXCL9 were measured in duplicate and interpolated from the CXCL9 standard curve and corrected for sample dilution. The interpolated dilution factor corrected values are plotted (mean +/- SD, n=2). The mean CXCL9 concentration was determined to be 993.9 pg/mL in PHA-M stimulated PBMC cell extract and 824.9 pg/mL in thyroid tissue extract.
17. Assay Specificity

This kit recognizes both native and recombinant human CXCL9 protein in cell culture supernatant, cell and tissue extract samples only.

![Graph showing CXCL9 levels in unstimulated and stimulated PBMC supernatants]

Figure 5. Comparison of CXCL9 in unstimulated and PHA-M stimulated human PBMC cell supernatants. Human PBMC cells were cultured in the absence or presence of 1.5% PHA-M for 2 days. The concentrations of CXCL9 were measured in three different dilutions of the supernatant samples in duplicates and interpolated from the CXCL9 standard curve. The interpolated values are plotted (mean +/- SD, n=3). The mean CXCL9 concentration was determined to be 21.3 ng/mL in PHA-M stimulated PBMC cell supernatant, 1.6 ng/mL in unstimulated supernatants and undetectable in media (not shown).

Saliva and milk samples have not been tested with this kit.

Urine, bronchial lavage, serum, and plasma samples are incompatible with this kit.

CROSS REACTIVITY

Recombinant human GRO-alpha (CXCL1), GRO-beta (CXCL2) and GRO-gamma (CXCL3) were prepared at 50 ng/mL and 1 ng/mL and assayed for cross reactivity. No cross-reactivity was observed.
18. Species Reactivity

This kit recognizes human CXCL9 protein.

Other species reactivity was determined by measuring mouse recombinant protein prepared within the working range of the assay, interpolating the protein concentrations from the human standard curve, and expressing the interpolated concentrations as a percentage of the human recombinant protein concentration assayed at the same dilution.

Please contact our Technical Support team for more information.
19. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate Pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standard dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; increase to 2 or 3 hour standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td></td>
<td>Incubation times with TMB too brief</td>
<td>Ensure sufficient incubation time until blue color develops prior addition of Stop solution</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions.</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store your reconstituted standards at -80°C, all other assay components 4°C. Keep TMB Development Solution protected from light.</td>
</tr>
<tr>
<td>Precipitate in Diluent</td>
<td>Precipitation and/or coagulation of components within the Diluent.</td>
<td>Precipitate can be removed by gently warming the Diluent to 37°C.</td>
</tr>
</tbody>
</table>
Technical Support

Copyright © 2020 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

For all technical or commercial enquiries please go to:

www.abcam.com/contactus
www.abcam.cn/contactus (China)
www.abcam.co.jp/contactus (Japan)