ab229404
Human Cardiac Troponin I CatchPoint®
SimpleStep ELISA® Kit

For the quantitative measurement of Cardiac Troponin I in human serum, plasma, cell culture supernatants, and cell and tissue extracts.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview 1
2. Protocol Summary 3
3. Precautions 4
4. Storage and Stability 4
5. Limitations 5
6. Materials Supplied 5
7. Materials Required, Not Supplied 6
8. Technical Hints 6
9. Reagent Preparation 8
10. Standard Preparation 10
11. Sample Preparation 12
12. Plate Preparation 15
13. Assay Procedure 16
14. Calculations 18
15. Typical Data 19
16. Typical Sample Values 21
17. Assay Specificity 25
18. Species Reactivity 26
19. Troubleshooting 27
20. Notes 28

Technical Support 30
1. Overview

Cardiac Troponin I in vitro CatchPoint SimpleStep ELISA (Enzyme-Linked Immunosorbent Assay) kit is designed for the quantitative measurement of Cardiac Troponin I protein in human serum, plasma, cell culture supernatants, and cell and tissue extracts.

The CatchPoint SimpleStep ELISA employs an affinity tag labeled capture antibody and a reporter conjugated detector antibody which immunocapture the sample analyte in solution. This entire complex (capture antibody/analyte/detector antibody) is in turn immobilized via immunoaffinity of an anti-tag antibody coating the well. To perform the assay, samples or standards are added to the wells, followed by the antibody mix. After incubation, the wells are washed to remove unbound material. CatchPoint HRP Development Solution containing the Stoplight Red Substrate is added. During incubation, the substrate is catalyzed by HRP generating a fluorescent product. Signal is generated proportionally to the amount of bound analyte and the intensity is measured in a fluorescence plater reader at 530/570/590 nm Excitation/Cutoff/Emission.

The regulatory troponin complex regulates skeletal and cardiac muscle contraction. This complex, together with tropomyosin, is located on the actin filament and it is composed of three protein subunits: troponin T (the tropomyosin-binding subunit), troponin I (the inhibitory subunit, which inhibits the ATPase activity of acto-myosin), and troponin C (the Ca2+-binding subunit). Troponins T and I have unique cardiac isoforms, whereas cardiac and skeletal muscle share troponin C. Specifically, three human troponin I isoforms have been described: one is expressed in cardiac muscle (Cardiac Troponin I) and the other two are found in slow-twitch and fast-twitch skeletal muscle fibers (slow sTnI and fast sTnI, respectively). The overlap in sequence between Cardiac Troponin I and slow sTnI is approximately 40% and somewhat less for fast sTnI. Cardiac Troponin I is 209 amino acid long with a molecular weight of approximately 24 kDa. Mouse and rat Cardiac Troponin I proteins both show 93% amino acid identity to human Cardiac Troponin I.
The presence of human Cardiac Troponin I in serum (together with chest pain and electrocardiographic changes) is now considered as one highly specific biochemical marker of myocardial injury, risk stratification of acute coronary syndrome and myocardial infarction. Mutations of Cardiac Troponin I are associated with hereditary cardiomyopathy. Specifically, defects in Cardiac Troponin I are the cause of cardiomyopathy familial hypertrophic type 7 (CMH7). Familial hypertrophic cardiomyopathy is a hereditary heart disorder characterized by ventricular hypertrophy, which is usually asymmetric and often involves the interventricular septum. The symptoms include dyspnea, syncope, collapse, palpitations, and chest pain. They can be readily provoked by exercise. The disorder has inter- and intra-familial variability ranging from benign to malignant forms with high risk of cardiac failure and sudden cardiac death. Defects in Cardiac Troponin I also cause cardiomyopathy familial restrictive type 1 (RCM1). RCM1 is a heart muscle disorder characterized by impaired filling of the ventricles with reduced diastolic volume, in the presence of normal or near normal wall thickness and systolic function. Furthermore, cardiomyopathy dilated type 2A (CMD2A) and cardiomyopathy dilated type 1FF (CMD1FF), disorders characterized by ventricular dilation and impaired systolic function resulting in congestive heart failure and arrhythmia, are caused by defects in Cardiac Troponin I.
2. Protocol Summary

Prepare all reagents, samples, and standards as instructed

↓

Add 50 µL standard or sample to appropriate wells

↓

Add 50 µL Antibody Cocktail to all wells

↓

Incubate at room temperature for 1 hour

↓

Aspirate and wash each well three times with 350 µL 1X Wash Buffer PT

↓

Add 100 µL of prepared CatchPoint HRP Development Solution to each well and incubate for 5 or 10 minutes (See 13.7)

↓

Read fluorescence at Ex/Cutoff/Em 530/570/590 nm
3. Precautions

Please read these instructions carefully prior to beginning the assay.

- All kit components have been formulated and quality control tested to function successfully as a kit.

- We understand that, occasionally, experimental protocols might need to be modified to meet unique experimental circumstances. However, we cannot guarantee the performance of the product outside the conditions detailed in this protocol booklet.

- Reagents should be treated as possible mutagens and should be handle with care and disposed of properly. Please review the Safety Datasheet (SDS) provided with the product for information on the specific components.

- Observe good laboratory practices. Gloves, lab coat, and protective eyewear should always be worn. Never pipet by mouth. Do not eat, drink or smoke in the laboratory areas.

- All biological materials should be treated as potentially hazardous and handled as such. They should be disposed of in accordance with established safety procedures.

4. Storage and Stability

Store kit at +4°C immediately upon receipt. Kit has a storage time of 1 year from receipt, providing components have not been reconstituted.

Refer to list of materials supplied for storage conditions of individual components. Observe the storage conditions for individual prepared components in the Materials Supplied section.
5. Limitations

- Assay kit intended for research use only. Not for use in diagnostic procedures.
- Do not mix or substitute reagents or materials from other kit lots or vendors. Kits are QC tested as a set of components and performance cannot be guaranteed if utilized separately or substituted.
- All data, except Typical Standard Curve and Sensitivity were collected using the colorimetric version of this kit (ab200016).

6. Materials Supplied

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Cardiac Troponin I Capture Antibody 10X</td>
<td>600 µL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Human Cardiac Troponin I Detector Antibody 10X</td>
<td>600 µL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Human Cardiac Troponin I Lyophilized Recombinant Protein</td>
<td>2 Vials</td>
<td>+4°C</td>
</tr>
<tr>
<td>Antibody Diluent CPI</td>
<td>6 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Wash Buffer PT 10X</td>
<td>20 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Cell Extraction Buffer PTR 5X</td>
<td>10 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Cell Extraction Enhancer Solution 50X</td>
<td>1 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Stoplight Red Substrate Buffer</td>
<td>12 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>100X Stoplight Red Substrate</td>
<td>120 µL</td>
<td>+4°C</td>
</tr>
<tr>
<td>500X Hydrogen Peroxide (H₂O₂, 3%)</td>
<td>50 µL</td>
<td>+4°C</td>
</tr>
<tr>
<td>Sample Diluent NS</td>
<td>50 mL</td>
<td>+4°C</td>
</tr>
<tr>
<td>SimpleStep Pre-Coated Black 96-Well Microplate</td>
<td>96 Wells</td>
<td>+4°C</td>
</tr>
<tr>
<td>Plate Seal</td>
<td>1</td>
<td>+4°C</td>
</tr>
</tbody>
</table>
7. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Fluorescence microplate reader Ex/Cutoff/Em 530/570/590 nm.
- Method for determining protein concentration (BCA assay recommended).
- Deionized water.
- Multi- and single-channel pipettes.
- Tubes for standard dilution.
- Plate shaker for all incubation steps.
- Optional: Phenylmethylsulfonyl Fluoride (PMSF) (or other protease inhibitors).

8. Technical Hints

- Samples generating values higher than the highest standard should be further diluted in the appropriate sample dilution buffers.
- Avoid foaming or bubbles when mixing or reconstituting components.
- Avoid cross contamination of samples or reagents by changing tips between sample, standard and reagent additions.
- Ensure plates are properly sealed or covered during incubation steps.
- Complete removal of all solutions and buffers during wash steps is necessary to minimize background.
- As a guide, typical ranges of sample concentration for commonly used sample types are shown below in Sample Preparation (section 11).
- All samples should be mixed thoroughly and gently.
- Avoid multiple freeze/thaw of samples.
- Incubate ELISA plates on a plate shaker during all incubation steps.
- When generating positive control samples, it is advisable to change pipette tips after each step.
- The provided Antibody Diluents and Sample Diluents contain protease inhibitor aprotinin. Additional protease inhibitors can be added if required.

- The provided Cell Extraction Buffer 5X contains phosphatase inhibitors and protease inhibitor aprotinin. Additional protease inhibitors can be added if required.

- The provided Cell Extraction Enhancer Solution 50X may precipitate when stored at + 4°C. To dissolve, warm briefly at + 37°C and mix gently. The Cell Extraction Enhancer Solution 50X can be stored at room temperature to avoid precipitation.

- The incubation times provided in this protocol were optimized for fastest results with good signal. It is possible to increase the signal with longer incubation times, further optimization might be necessary.

- Keep in mind any RFU values shown are relative, NOT absolute. RFU from one plate reader are not comparable to another, especially if different make or model.

- To avoid high background always add samples or standards to the well before the addition of the antibody cocktail.

- This kit is sold based on number of tests. A ‘test’ simply refers to a single assay well. The number of wells that contain sample, control or standard will vary by product. Review the protocol completely to confirm this kit meets your requirements. Please contact our Technical Support staff with any questions.
9. Reagent Preparation

- Equilibrate all reagents to room temperature (18-25°C) prior to use. The kit contains enough reagents for 96 wells. The sample volumes below are sufficient for 48 wells (6 x 8-well strips); adjust volumes as needed for the number of strips in your experiment.
- Prepare only as much reagent as is needed on the day of the experiment. Capture and Detector Antibodies have only been tested for stability in the provided 10X formulations.

9.1 1X Cell Extraction Buffer PTR (For cell and tissue extracts only):
If required, prepare 1X Cell Extraction Buffer PTR by diluting Cell Extraction Buffer PTR 5X and 50X Cell Extraction Enhancer Solution to 1X with deionized water. To make 10 mL 1X Cell Extraction Buffer PTR combine 7.8 mL deionized water, 2 mL Cell Extraction Buffer PTR 5X and 200 µL Cell Extraction Enhancer Solution 50X. Mix thoroughly and gently. If required protease inhibitors can be added.
Alternative – Enhancer may be added to 1X Cell Extraction Buffer PTR after extraction of cells or tissue. Refer to note in the Troubleshooting section.

9.2 1X Wash Buffer PT:
Prepare 1X Wash Buffer PT by diluting Wash Buffer PT 10X with deionized water. To make 50 mL 1X Wash Buffer PT combine 5 mL Wash Buffer PT 10X with 45 mL deionized water. Mix thoroughly and gently.

9.3 Antibody Cocktail:
Prepare Antibody Cocktail by diluting the capture and detector antibodies in Antibody Diluent CPI. To make 3 mL of the Antibody Cocktail combine 300 µL 10X Capture Antibody and 300 µL 10X Detector Antibody with 2.4 mL Antibody Diluent CPI. Mix thoroughly and gently.
9.4 CatchPoint HRP Development Solution

Just prior to use prepare CatchPoint HRP Development Solution by diluting the 100X Stoplight Red Substrate and the 500X Hydrogen Peroxide in Stoplight Red Substrate Buffer.

For example, to make 6 mL of the CatchPoint HRP Development Solution combine 60 µL 100X Stoplight Red Substrate and 12 µL of 500X Hydrogen Peroxide with 5.928 mL Stoplight Red Substrate Buffer. Mix thoroughly and gently.
10. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Discard working standard dilutions after use as they do not store well.
- The following section describes the preparation of a standard curve for duplicate measurements (recommended).

10.1 For serum, plasma, and cell culture supernatant samples, reconstitute the Cardiac Troponin I standard sample by adding 100 µL Sample Diluent NS.

For cell and tissue extract samples, reconstitute the Cardiac Troponin I standard sample by adding 100 µL 1X Cell Extraction Buffer PTR.

Mix thoroughly and gently. Hold at room temperature for 10 minutes and mix gently. This is the 50 ng/mL Stock Standard Solution.

10.2 Label 11 tubes, Standards 1–11.

10.3 Add 240 µL appropriate diluent into tube number 1 and 150 µL of appropriate diluent into numbers 2-11.

10.4 Use the Stock Standard to prepare the following dilution series. Standard #11 contains no protein and is the Blank control.

Standards will be added to the plate in step 13.3. If desired all 11 standards can be used for a full standard curve. Alternatively, to commit fewer wells to the standard curve, select a subset of at least 7 standards plus the blank control. If 7 standards are desired, we recommend standards #1-7.
<table>
<thead>
<tr>
<th>Standard #</th>
<th>Dilution Sample</th>
<th>Volume to Dilute (μL)</th>
<th>Volume of Diluent (μL)</th>
<th>Starting Conc. (ng/mL)</th>
<th>Final Conc. (ng/mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stock</td>
<td>60</td>
<td>240</td>
<td>50</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>Standard#1</td>
<td>150</td>
<td>150</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>Standard#2</td>
<td>150</td>
<td>150</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>4</td>
<td>Standard#3</td>
<td>150</td>
<td>150</td>
<td>2.5</td>
<td>1.25</td>
</tr>
<tr>
<td>5</td>
<td>Standard#4</td>
<td>150</td>
<td>150</td>
<td>1.25</td>
<td>0.63</td>
</tr>
<tr>
<td>6</td>
<td>Standard#5</td>
<td>150</td>
<td>150</td>
<td>0.63</td>
<td>0.31</td>
</tr>
<tr>
<td>7</td>
<td>Standard#6</td>
<td>150</td>
<td>150</td>
<td>0.31</td>
<td>0.16</td>
</tr>
<tr>
<td>8</td>
<td>Standard#7</td>
<td>150</td>
<td>150</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>9</td>
<td>Standard#8</td>
<td>150</td>
<td>150</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>10</td>
<td>Standard#9</td>
<td>150</td>
<td>150</td>
<td>0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>None</td>
<td>0</td>
<td>150</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
11. Sample Preparation

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Serum</td>
<td>1:4 – 1:64</td>
</tr>
<tr>
<td>Human Plasma – Heparin</td>
<td>1:4 – 1:64</td>
</tr>
<tr>
<td>Cell Culture Media</td>
<td>1:10 – 1:160</td>
</tr>
<tr>
<td>Human Heart Homogenate</td>
<td>0.1 – 0.4 µg/mL</td>
</tr>
</tbody>
</table>

11.1 Plasma:
Collect plasma using heparin. Centrifuge samples at 2,000 x g for 10 minutes. Dilute samples into Sample Diluent NS and assay. Store un-diluted plasma samples at -20°C or below for up to 3 months. Avoid repeated freeze-thaw cycles.

11.2 Serum:
Samples should be collected into a serum separator tube. After clot formation, centrifuge samples at 2,000 x g for 10 minutes and collect serum. Dilute samples into Sample Diluent NS and assay. Store un-diluted serum at -20°C or below. Avoid repeated freeze-thaw cycles.

11.3 Cell Culture Supernatants:
Centrifuge cell culture media at 2,000 x g for 10 minutes to remove debris. Collect supernatants and assay or dilute samples into Sample Diluent NS and assay. Store un-diluted samples at -20°C or below. Avoid repeated freeze-thaw cycles.
11.4 Preparation of extracts from cell pellets:
11.4.1 Collect non-adherent cells by centrifugation or scrape to collect adherent cells from the culture flask. Typical centrifugation conditions for cells are 500 x g for 5 minutes at 4°C.
11.4.2 Rinse cells twice with PBS.
11.4.3 Solubilize pellet at 2x10^7 cell/mL in chilled 1X Cell Extraction Buffer PTR.
11.4.4 Incubate on ice for 20 minutes.
11.4.5 Centrifuge at 18,000 x g for 20 minutes at 4°C.
11.4.6 Transfer the supernatants into clean tubes and discard the pellets.
11.4.7 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.
11.4.8 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.

11.5 Preparation of extracts from adherent cells by direct lysis (alternative protocol):
11.5.1 Remove growth media and rinse adherent cells 2 times in PBS.
11.5.2 Solubilize the cells by addition of chilled 1X Cell Extraction Buffer PTR directly to the plate (use 750 µL - 1.5 mL 1X Cell Extraction Buffer PTR per confluent 15 cm diameter plate).
11.5.3 Scrape the cells into a microfuge tube and incubate the lysate on ice for 15 minutes.
11.5.4 Centrifuge at 18,000 x g for 20 minutes at 4°C.
11.5.5 Transfer the supernatants into clean tubes and discard the pellets.
11.5.6 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.
11.5.7 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.
11.6 Preparation of extracts from tissue homogenates:

11.6.1 Tissue lysates are typically prepared by homogenization of tissue that is first minced and thoroughly rinsed in PBS to remove blood (dounce homogenizer recommended).

11.6.2 Homogenize 100 to 200 mg of wet tissue in 500 µL – 1 mL of chilled 1X Cell Extraction Buffer PTR. For lower amounts of tissue adjust volumes accordingly.

11.6.3 Incubate on ice for 20 minutes.

11.6.4 Centrifuge at 18,000 x g for 20 minutes at 4°C.

11.6.5 Transfer the supernatants into clean tubes and discard the pellets.

11.6.6 Assay samples immediately or aliquot and store at -80°C. The sample protein concentration in the extract may be quantified using a protein assay.

11.6.7 Dilute samples to desired concentration in 1X Cell Extraction Buffer PTR.
12. Plate Preparation

- The 96 well plate strips included with this kit are supplied ready to use. It is not necessary to rinse the plate prior to adding reagents.
- Unused plate strips should be immediately returned to the foil pouch containing the desiccant pack, resealed and stored at 4°C.
- For each assay performed, a minimum of two wells must be used as the zero control.
- For statistical reasons, we recommend each sample should be assayed with a minimum of two replicates (duplicates).
- Differences in well fluorescence or “edge effects” have not been observed with this assay.
- Ensure plate and all materials are equilibrated to room temperature during use.
- Cover the plate with a plate seal during incubation steps.
13. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature prior to use.
- We recommend that you assay all standards, controls and samples in duplicate.
- Prepare all reagents, working standards, and samples as directed in the previous sections.

13.1 Prepare all reagents, working standards, and samples as directed in the previous sections.

13.2 Remove excess microplate strips from the plate frame, return them to the foil pouch containing the desiccant pack, reseal and return to 4°C storage.

13.3 Add 50 µL of all sample or standard to appropriate wells.

13.4 Add 50 µL of the Antibody Cocktail to each well.

13.5 Seal the plate and incubate for 1 hour at room temperature on a plate shaker set to 400 rpm.

13.6 Wash each well with 3 x 350 µL 1X Wash Buffer PT. Wash by aspirating or decanting from wells then dispensing 350 µL 1X Wash Buffer PT into each well. Complete removal of liquid at each step is essential for good performance. After the last wash invert the plate and blot it against clean paper towels to remove excess liquid.

13.7 Add 100 µL of prepared CatchPoint HRP Development Solution to each well and incubate for 10 minutes if testing samples diluted in Sample Diluent NS and 5 minutes for samples diluted in 1X Cell Extraction Buffer PTR in the dark on a plate shaker set to 400 rpm. Further optimization of incubation time vs signal strength can be performed if needed.

13.8 Record the fluorescence at Ex/Cutoff/Em 530/570/590 nm. If using a Molecular Devices' plate reader supported by SoftMax® Pro software, a preconfigured protocol for these CatchPoint SimpleStep ELISA Kits is available with all the protocol and analysis settings at www.softmaxpro.org
Mode: Fluorescence

Instrument settings: Endpoint

Excitation: 530 nm

Cutoff: 570 nm

Emission: 590 nm

Sensitivity: 6 flashes/read or 200ms

PMT: Auto

Auto calibrate: On

Read: Top

Read Height: 1*

For microplate readers with Pre-Read Optimization option, the Read Height as well as Microplate Optimization is recommended before the first read.

13.9 Analyze the data as described below.
14. Calculations

14.1 Preconfigured protocols are available when using SoftMax Pro software from Molecular Devices.

14.2 Calculate the average fluorescence value for the blank control (zero) standards. Subtract the average blank control standard fluorescence value from all other fluorescence values.

14.3 **Create a standard curve** by plotting the average blank control subtracted fluorescence value for each standard concentration (y-axis) against the target protein concentration (x-axis) of the standard. Use graphing software to draw the best smooth curve through these points to construct the standard curve.

Note: Most fluorescence reader software or graphing software will plot these values and fit a curve to the data. A four-parameter curve fit (4PL) is often the best choice; however, other algorithms (e.g. linear, semi-log, log/log, 4-parameter logistic) can also be tested to determine if it provides a better curve fit to the standard values.

14.4 Determine the concentration of the target protein in the sample by interpolating the blank control subtracted fluorescence values against the standard curve. Multiply the resulting value by the appropriate sample dilution factor, if used, to obtain the concentration of target protein in the sample.

14.5 Samples generating fluorescence values greater than that of the highest standard should be further diluted and reanalyzed. Similarly, samples which measure at fluorescence values less than that of the lowest standard should be retested in a less dilute form.
15. Typical Data

Typical standard curve – data provided for demonstration purposes only. A new standard curve must be generated for each assay performed.
Figure 1. Example of human Cardiac Troponin I standard curve in Sample Diluent NS. The Cardiac Troponin I standard curve was prepared as described in Section 10. Raw data generated on SpectraMax M4 Multi-Mode Microplate Reader is shown in the table. Background-subtracted data values (mean +/- SD) are graphed.
16. Typical Sample Values

SENSITIVITY –
The calculated minimal detectable dose (MDD) is 17 pg/mL. The MDD was determined by calculating the mean of zero standard replicates (n=18) and adding 2 standard deviations then extrapolating the corresponding concentration.

RECOVERY –
Three concentrations of Cardiac Troponin I recombinant protein were spiked in duplicate to the indicated biological matrix to evaluate signal recovery in the working range of the assay.

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Average % Recovery</th>
<th>Range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Serum (1:4)</td>
<td>95</td>
<td>93 - 101</td>
</tr>
<tr>
<td>Human Plasma – Heparin (1:4)</td>
<td>99</td>
<td>96 - 105</td>
</tr>
<tr>
<td>Cell Culture Media (1:10)</td>
<td>102</td>
<td>93 - 105</td>
</tr>
<tr>
<td>Human Heart Homogenate (0.1 µg/mL)</td>
<td>103</td>
<td>99 - 108</td>
</tr>
</tbody>
</table>
Linearity of Dilution

Linearity of dilution is determined based on interpolated values from the standard curve. Linearity of dilution defines a sample concentration interval in which interpolated target concentrations are directly proportional to sample dilution.

Native Cardiac Troponin I was measured in Human Heart Homogenate in a 2-fold dilution series. Sample dilutions are made in Sample Diluent 1X Cell Extraction Buffer PTR.

Recombinant Cardiac Troponin I Human protein was spiked into Human Serum, Human Plasma Heparin, and RPMI Base Media and diluted in a 2-fold dilution series in Sample Diluent NS.

<table>
<thead>
<tr>
<th>Dilution Factor</th>
<th>Interpolated value</th>
<th>25% Human Serum</th>
<th>25% Human Plasma (Heparin)</th>
<th>10% Cell Culture Media</th>
<th>0.4 µg/mL Human Heart Homogenate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Undiluted</td>
<td>ng/mL</td>
<td>7.038</td>
<td>5.117</td>
<td>5.044</td>
<td>0.865</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>ng/mL</td>
<td>3.892</td>
<td>2.860</td>
<td>2.455</td>
<td>0.350</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>111</td>
<td>112</td>
<td>97</td>
<td>81</td>
</tr>
<tr>
<td>4</td>
<td>ng/mL</td>
<td>2.010</td>
<td>1.410</td>
<td>1.178</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>114</td>
<td>110</td>
<td>93</td>
<td>83</td>
</tr>
<tr>
<td>8</td>
<td>ng/mL</td>
<td>1.025</td>
<td>0.732</td>
<td>0.555</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>117</td>
<td>114</td>
<td>88</td>
<td>NL</td>
</tr>
<tr>
<td>16</td>
<td>ng/mL</td>
<td>0.464</td>
<td>0.325</td>
<td>0.282</td>
<td>NL</td>
</tr>
<tr>
<td></td>
<td>% Expected value</td>
<td>105</td>
<td>102</td>
<td>89</td>
<td>NL</td>
</tr>
</tbody>
</table>

NL – Non-Linear

PRECISION –

Mean coefficient of variations of interpolated values of Cardiac Troponin I from three concentrations of human heart homogenate within the working range of the assay.

<table>
<thead>
<tr>
<th></th>
<th>Intra-Assay</th>
<th>Inter-Assay</th>
</tr>
</thead>
<tbody>
<tr>
<td>n =</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>CV(%)</td>
<td>4.51</td>
<td>13.48</td>
</tr>
</tbody>
</table>
Figure 2. Linearity of dilution of spiked Cardiac Troponin I in serum, heparin plasma, and cell culture media. Recombinant human Cardiac Troponin I was spiked into serum (1:4), heparin plasma (1:4), and cell culture media (1:10) and then diluted in a 2-fold dilution series in Sample Diluent NS. The interpolated dilution factor corrected values are graphed (mean +/- SD).
Figure 3. Linearity of dilution of native Cardiac Troponin I in human heart homogenate. Native Cardiac Troponin I in human heart homogenate (0.4 µg/mL) was diluted in a 2-fold dilution series in 1X Cell Extraction Buffer PTR. The interpolated concentration corrected values are graphed (mean +/- SD).
17. Assay Specificity

This kit recognizes both native and recombinant human Cardiac Troponin I protein in serum, plasma heparin, and cell and tissue extract samples only.

Plasma EDTA and plasma citrate samples are not suitable for use with this kit.

Detection of native signal in serum samples

Ten individual healthy male donors were evaluated for the presence of Human Cardiac Troponin I in serum (diluted 1:4). Levels of Human Cardiac Troponin I were not detectable in any of the ten donors, with a mean O.D. above background of only 0.0097.

CROSS REACTIVITY

Human Cardiac Troponin C was prepared at 100 ng/mL, 10 ng/mL and 0.625 ng/mL in Sample Diluent NS and assayed for cross-reactivity. No cross-reactivity was seen with any of these concentrations of Human Cardiac Troponin C, with all three giving an average O.D. equivalent to background.

INTERFERENCE

Cardiac Troponin I and Cardiac Troponin C often form a complex in an equimolar concentration. Thus, human Cardiac Troponin I was assayed at 2.5 ng/mL in the presence and absence of 2.5 ng/mL Cardiac Troponin C to assess interference. After background subtraction, recovery of Human Cardiac Troponin I in the presence of an equimolar concentration of Human Cardiac Troponin C was 113%.
18. **Species Reactivity**

This kit recognizes human Cardiac Troponin I protein. Other species have not been tested.

Please contact our Technical Support team for more information.
19. Troubleshooting

<table>
<thead>
<tr>
<th>Problem</th>
<th>Reason</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difficulty pipetting lysate; viscous lysate.</td>
<td>Genomic DNA solubilized</td>
<td>Prepare 1X Cell Extraction Buffer PTR (without enhancer). Add enhancer to lysate after extraction.</td>
</tr>
<tr>
<td>Poor standard curve</td>
<td>Inaccurate Pipetting</td>
<td>Check pipettes</td>
</tr>
<tr>
<td></td>
<td>Improper standard dilution</td>
<td>Prior to opening, briefly spin the stock standard tube and dissolve the powder thoroughly by gentle mixing</td>
</tr>
<tr>
<td>Low Signal</td>
<td>Incubation times too brief</td>
<td>Ensure sufficient incubation times; increase to 2 or 3 hour standard/sample incubation</td>
</tr>
<tr>
<td></td>
<td>Inadequate reagent volumes or improper dilution</td>
<td>Check pipettes and ensure correct preparation</td>
</tr>
<tr>
<td></td>
<td>Incubation times with CatchPoint HRP Development Solution too brief</td>
<td>Read plate again after longer incubation time</td>
</tr>
<tr>
<td>Large CV</td>
<td>Plate is insufficiently washed</td>
<td>Review manual for proper wash technique. If using a plate washer, check all ports for obstructions.</td>
</tr>
<tr>
<td></td>
<td>Contaminated wash buffer</td>
<td>Prepare fresh wash buffer</td>
</tr>
<tr>
<td>Low sensitivity</td>
<td>Improper storage of the ELISA kit</td>
<td>Store your reconstituted standards at -80°C, all other assay components 4°C. Keep Stoplight Red Substrate protected from light.</td>
</tr>
<tr>
<td>Precipitate in Diluent</td>
<td>Precipitation and/or coagulation of components within the Diluent.</td>
<td>Precipitate can be removed by gently warming the Diluent to 37°C.</td>
</tr>
</tbody>
</table>
20. Notes
Technical Support

Copyright © 2018 Abcam, All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print. This product was released in collaboration with Molecular Devices LLC, however for technical support questions, please contact Abcam Representatives.

Austria
wissenschaftlicherdienst@abcam.com | 019-288-259

France
supportscientifique@abcam.com | 01.46.94.62.96

Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154

Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com

UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
c.ca.technical@abcam.com | 877-749-8807

US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823

China
cn.technical@abcam.com | 400 921 0189 / +86 21 2070 0500

Japan
technical@abcam.co.jp | +81-(0)3-6231-0940

Singapore
sg.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450

New Zealand
nz.technical@abcam.com | +64-(0)9-909-7829