ab234050
Phospholipid Assay Kit (Colorimetric/Fluorometric)

For the measurement of choline-containing phospholipids in serum, plasma and exosomes.

This product is for research use only and is not intended for diagnostic use.
1. Overview	3
2. Materials Supplied and Storage	4
3. Materials Required, Not Supplied	5
4. General guidelines, precautions, and troubleshooting	6
5. Reagent Preparation	7
6. Standard Preparation	8
7. Sample Preparation	10
8. Assay Procedure	11
9. Data Analysis	13
10. Typical Data	15
11. Notes	18
1. Overview

Phospholipid Assay Kit (Colorimetric/Fluorometric) (ab234050) is a simple, accurate and reproducible way to measure total choline-containing phospholipids in biological samples such as serum, plasma and exosomes. This kit provides a high-throughput assay of inhibitors/inducers affecting phospholipid metabolism. The signal is directly proportional to the phospholipid concentration of phospholipids in the sample and can detect phospholipids in the range of 0.1 to 10 nmol per sample.

Prepare all samples, reagents and standards as required.

↓

Dilute standards for the standard curve.

↓

Create 50 µL Reaction Mix for each well.

↓

Incubate at 25°C for 30 minutes and measure fluorescence at Ex/Em=535/587 nm.
2. Materials Supplied and Storage

Store kit at -20°C in the dark immediately on receipt and check below for storage for individual components. Kit can be stored for 1 year from receipt, if components have not been reconstituted.

Reconstituted components are stable for 2 months.

Aliquot components in working volumes before storing at the recommended temperature.

Avoid repeated freeze-thaws of reagents.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage temperature (before prep)</th>
<th>Storage temperature (after prep)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>25 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Probe solution</td>
<td>0.2 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Hydrolysis Enzyme</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Development Mix</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Phospholipid Standard</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>
3. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- Microplate reader capable of measuring absorbance at OD 570 nm or fluorescence at Ex/Em = 535/587 nm.
- 96 well plate with clear flat bottom (for colorimetric assay) / 96 well plate with clear flat bottom, preferably black (for fluorometric assay).
4. General guidelines, precautions, and troubleshooting

Please observe safe laboratory practice and consult the safety datasheet.

For general guidelines, precautions, limitations on the use of our assay kits and general assay troubleshooting tips, particularly for first time users, please consult our guide: www.abcam.com/assaykitguidelines

For typical data produced using the assay, please see the assay kit datasheet on our website.
5. Reagent Preparation

Briefly centrifuge small vials at low speed prior to opening. Bring all reagents to room temperature before use.

5.1 Assay Buffer
1. Ready to use as supplied.

5.2 Probe Solution
1. Ready to use as supplied.

5.3 Hydrolysis Enzyme
1. Reconstitute each vial with 220 µL of Assay Buffer.

5.4 Development Mix
1. Reconstitute each vial with 220 µL of Assay Buffer.

5.5 Phospholipid Standard
1. Dissolve in 200 µL of distilled water to generate 50 mM phospholipid standard solution. Keep on ice while in use.
6. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Discard working standard dilutions after use as they do not store well.

For colorimetric detection:
1. Dilute 10 µL of the 50 mM phospholipid standard with 990 µL of distilled water to generate 0.5 mM phospholipid standard.
2. Using the above prepared standard (0.5 mM) prepare standard curve dilution as described in the table below.

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Phospholipid standard (0.5 mM) (µL)</th>
<th>Assay Buffer (µL)</th>
<th>Final volume standard in well (µL)</th>
<th>End amount of phospholipid standard in well (nmol/well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>96</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>92</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>88</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>84</td>
<td>50</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>80</td>
<td>50</td>
<td>5</td>
</tr>
</tbody>
</table>

Each dilution has enough standard to set up duplicate readings (2 x 50 µL).
For fluorometric detection:
1. Dilute the 0.5 mM phospholipid standard to 0.05 mM with distilled water.
2. Using the above prepared standard (0.05 mM) prepare standard curve dilution as described in the table below.

<table>
<thead>
<tr>
<th>Standard #</th>
<th>Phospholipid standard (0.05 mM) (µL)</th>
<th>Assay Buffer (µL)</th>
<th>Final volume standard in well (µL)</th>
<th>End amount of phospholipid standard in well (pmol/well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>96</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>92</td>
<td>50</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>88</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>5</td>
<td>16</td>
<td>84</td>
<td>50</td>
<td>400</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>80</td>
<td>50</td>
<td>500</td>
</tr>
</tbody>
</table>

Each dilution has enough standard to set up duplicate readings (2 x 50 µL).
7. Sample Preparation

General sample information:
- We recommend performing several dilutions of your sample to ensure the readings are within the standard value range.
- We recommend that you use fresh samples for the most reproducible assay.
- If you cannot perform the assay at the same time, we suggest that you snap freeze your samples in liquid nitrogen upon extraction and store them immediately at -80°C. When you are ready to test your samples, thaw them on ice. Be aware, however, that this might affect the stability of your samples and the readings can be lower than expected. Avoid multiple freeze-thaws.
- Since endogenous compounds might interfere with the reaction, to ensure accurate measurement of PPI in the test wells, we recommend spiking the samples with known amount of PPI Standard within the standard curve range.

7.1 Serum, plasma or exosomes:
- Add samples directly into sample wells of the 96-well plate.
- Bring volume to 50 µL/well with Assay Buffer.
8. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature just prior to use and gently agitate.
- Assay all standards, controls and samples in duplicate.

⚠️ Note: If you suspect your samples contain substance that can generate background, set up Sample Background Controls to correct for background noise.

8.1 Reaction wells set up:
- Standard wells = 50 µL standard dilutions.
- Sample wells = XXX µL samples (adjust volume to 50 µL/well with Assay Buffer).
- Sample Background Control wells = XXX µL samples (adjust volume to 50 µL/well with Assay Buffer).

8.2 Reaction mix:
1. Prepare 50 µL of Reaction Mix and Background Mix for each reaction. Prepare a master mix to ensure consistency.

<table>
<thead>
<tr>
<th>Component</th>
<th>Reaction Mix (µL)</th>
<th>Background Reaction Mix (µL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Buffer</td>
<td>44</td>
<td>46</td>
</tr>
<tr>
<td>Hydrolysis Enzyme</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>Development Mix</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Probe solution</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Add 50 µL of Reaction Mix into each standard and sample wells.
3. Add 50 µL of Background Reaction Mix into the background control sample wells.
ΔNote: Endogenous choline present in the samples can generate background. If choline is present in your samples, perform a background control without the Hydrolysis Enzyme and subtract this value from sample readings.

4. **Measurement:** For colorimetric assays, incubate the plate protected from light for 30 minutes at 25°C and measure absorbance (OD) at 570 nm.

5. **Measurement:** For fluorometric assays, incubate the plate protected from light for 30 minutes at 25°C and measure fluorescence at Ex/Em = 535/587 nm.
9. Data Analysis

Samples producing signals greater than that of the highest standard should be further diluted in appropriate buffer and reanalyzed, then multiply the concentration found by the appropriate dilution factor.

1. Average the duplicate reading for each standard, control and sample.
2. Subtract the mean value of the blank from all standards, controls and sample readings. This is the corrected absorbance/fluorescence.
3. If significant, subtract the sample background control from sample readings.
4. Plot the corrected values for each standard as a function of the final concentration of Phospholipid.
5. Draw the best smooth curve through these points to construct the standard curve. Most plate reader software or Excel can plot these values and curve fit. Calculate the trendline equation based on your standard curve data (use the equation that provides the most accurate fit).
6. Apply the corrected sample OD/RFU reading to the standard curve to get Phospholipid (B) amount in the sample wells.
7. Concentration of Phospholipid in B units / V nmol in the test samples is calculated as:

\[
\text{Phospholipid concentration} = \frac{B}{V} \times D = \text{nmol/µL} = \text{mM}
\]

Where:

B = amount of Phospholipid in the sample well calculated from standard curve in nmol.
V = sample volume added in the sample wells (µL).
D = sample dilution factor if sample is diluted to fit within the standard curve range (prior to reaction well set up).
In case of spiked samples use the following equation, wherever required;

8. Using **spiked samples**, correct for any sample matrix interference by subtracting the sample reading from the spiked sample reading. This equation allows you to measure the Phospholipid concentration in your sample when matrix interference is significant.

\[
B = \left(\frac{OD_{sample \ corrected}}{OD_{spiked \ corrected}} \right) \times \text{Phospholipid Spike (nmol)}
\]

Where:
- \(B \) = Phospholipid amount in sample well (nmol).
- \(OD_{sample \ corrected} \) = OD/RFU of sample with blank and background readings subtracted.
- \(OD_{spiked \ corrected} \) = OD/RFU of spiked sample with blank and background readings subtracted.
- Phospholipid Spike = amount of Phospholipid spiked (nmol) into the sample well.

Phospholipid MW = 770.123 g/mol
10. Typical Data

Data provided for demonstration purposes only.

(A)

![Phospholipid Standard curve (colorimetric).](image)

Figure 1: Phospholipid Standard curve (colorimetric).

(B)

![Phospholipid Standard curve (fluorometric).](image)

Figure 2: Phospholipid Standard curve (Fluorometric).
Figure 3: Determination of spiked phospholipid amount using human serum and plasma (colorimetric).

Figure 4: Determination of spiked phospholipid amount using human serum and plasma (Fluorometric).
Figure 5: Determination of Phospholipid Concentration in Human Serum and plasma. Normal concentrations in human ranges between 1 and 4 mM.

Figure 6: Determination of phospholipid in human lung (A549) and colon (M1049) carcinoma exosomes. Experiments were carried out in triplicate and followed kit protocols.
11. Notes
Technical Support

Copyright © 2012-2017 Abcam. All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

Austria
wissenschaftlicherdienst@abcam.com | 019-288-259

France
supportscientifique@abcam.com | 01.46.94.62.96

Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154

Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com

UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
can.technical@abcam.com | 877-749-8807

US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823

China
cn.technical@abcam.com | 400 921 0189 / +86 21 2070 0500

Japan
technical@abcam.co.jp | +81-(0)3-6231-0940

Singapore
sg.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450

New Zealand
nz.technical@bbc.com | +64-(0)9-909-7829

Copyright © 2017 Abcam. All rights reserved