ab234056
DNase I Assay Kit
(Fluorometric)

For the quantitative evaluation of DNase I activity of purified enzymes and their inhibitors as well as comparative examination of DNase I activity in biological samples.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview 1
2. Materials Supplied and Storage 2
3. Materials Required, Not Supplied 3
4. General guidelines, precautions, and troubleshooting 4
5. Reagent Preparation 5
6. Standard Preparation 6
7. Sample Preparation 7
8. Assay Procedure 8
9. Data Analysis 10
10. FAQs / Troubleshooting 11
11. Typical Data 12
12. Notes 15
1. Overview

DNase I Assay Kit (Fluorometric) (ab234056) allows for quantitative evaluation of DNase I activity of purified enzymes and their inhibitors as well as comparative examination of DNase I activity in biological samples. Enzyme activity is detected upon cleavage of a DNA Probe, which yields a fluorescent DNA product measured at Ex/Em = 651/681 nm. The limit of quantification (L.O.Q) is 178 fmoles of DNA probe cleaved per minute per mL.

Prepare samples, controls and standards.

\[\downarrow\]

Add Reaction Mix to each well containing Positive Control, Test Samples, and Background Control. Add DNA Probe Standard Reaction Mix to each well containing DNA Probe Standard.

\[\downarrow\]

Measure fluorescence (Ex/Em = 651/681 nm) in kinetic mode every 30 seconds for at least 90 minutes at 37°C.
2. Materials Supplied and Storage

Store kit at -20°C in the dark immediately on receipt and check below for storage for individual components. Kit can be stored for 1 year from receipt, if components have not been reconstituted.

Aliquot components in working volumes before storing at the recommended temperature.

Avoid repeated freeze-thaws of reagents.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage temperature (before prep)</th>
<th>Storage temperature (before prep)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X DNase I Assay Buffer</td>
<td>1.1 mL</td>
<td>-20°C</td>
<td>4°C</td>
</tr>
<tr>
<td>DNA Probe</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>DNA Probe Re-suspension Buffer</td>
<td>250 μL</td>
<td>-20°C</td>
<td>RT</td>
</tr>
<tr>
<td>DNase I Positive Control</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Positive Control Re-suspension Buffer</td>
<td>1 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Molecular Biology Grade Water</td>
<td>25 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>
3. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- 96-well white plate with flat bottom, low-medium binding.
- Spectrophotometer.
- Purified DNase I, DNase I inhibitors, biological samples.
- Optional: 50 mM 2-Nitro-5-thiocyanatobenzoic acid.
4. General guidelines, precautions, and troubleshooting

Please observe safe laboratory practice and consult the safety datasheet.

For general guidelines, precautions, limitations on the use of our assay kits and general assay troubleshooting tips, particularly for first time users, please consult our guide: www.abcam.com/assaykitguidelines

For typical data produced using the assay, please see the assay kit datasheet on our website.
5. Reagent Preparation

Briefly centrifuge small vials at low speed prior to opening.

5.1 10X DNase I Assay Buffer
Warm to room temperature before use. Store at 4°C.

5.2 DNA Probe
Reconstitute with 220 μL of DNA Probe Re-suspension Buffer. Aliquot and store at -20°C. Avoid multiple freeze-thaw cycles.

5.3 DNA Probe Re-suspension Buffer
Ready to use as supplied. Store at room temperature.

5.4 DNase I Positive Control
Reconstitute with 220 μL of Positive Control Re-suspension Buffer. Aliquot and store at -20°C.

5.5 Positive Control Re-suspension Buffer
Ready to use as supplied. Store at -20°C.
6. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Discard working standard dilutions after use as they do not store well.

1. Prepare 1 μM DNA Probe stock by diluting 4 μL of 25 μM DNA Probe in 96 μL of molecular biology grade water.
2. Add 0, 4, 8, 12, 16, 20 μL of 1 μM DNA Probe into a series of wells on a 96-well plate to generate 0, 4, 8, 12, 16, 20, pmol/well of DNA Probe Standard. Adjust the volume to 50 μL with molecular biology grade water.

△ Note: It is imperative to use molecular biology grade water for sample preparation and filter tips for sample pipetting at all times to avoid DNAse contamination.
7. Sample Preparation

1. Thaw any purified enzymes and biological samples.
2. Dilute enzymes, inhibitors, and biological samples to a desired concentration with water or their corresponding storage buffer. Add a desired amount of enzyme, inhibitor, or biological sample to each well and adjust the volume to 50 μL with water. Mix well.

Δ Note: It is imperative to use molecular biology grade water for sample preparation and filter tips for sample pipetting at all times to avoid DNase contamination.

Δ Note: Do not store enzyme/inhibitor/sample dilutions; discard the dilutions instead.

Δ Note: The recommended amount of serum sample to use in the assay is 10-25 μL.

Δ Note: For uncharacterized enzymes, we suggest testing several doses to ensure the reading is within the Standard Curve range.

Δ Note: If the user suspects any non-specific sample DNase activity, 50 mM 2-Nitro-5-thiocyanatobenzoic acid can be used to specifically inhibit DNase I activity.
8. Assay Procedure

- Equilibrate all materials and prepared reagents to room temperature just prior to use and gently agitate.
- Assay all standards, controls and samples in duplicate.

\[\Delta \text{Note:} \text{ It is imperative to use molecular biology grade water for sample preparation and filter tips for sample pipetting at all times to avoid DNAse contamination.} \]

8.1 Background Control and Positive Control:

1. Use water only (no enzyme/sample) for background control reaction.
2. For positive control reaction, add 2 \(\mu \text{L} \) of DNase I Positive Control to 48 \(\mu \text{L} \) of water. Mix well.

8.2 Reaction Mix:

1. Prepare 50 \(\mu \text{L} \) of Sample Reaction Mix and DNA Probe Standard Reaction Mix for each reaction. Prepare a master mix to ensure consistency.

<table>
<thead>
<tr>
<th>Component</th>
<th>Sample Reaction Mix ((\mu \text{L}))</th>
<th>DNA Probe Standard Reaction Mix ((\mu \text{L}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X DNase I Assay Buffer</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>DNA Probe (25 (\mu \text{M}))</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>DNase I Positive Control</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Molecular Biology Grade H\text{2O}</td>
<td>38</td>
<td>38</td>
</tr>
</tbody>
</table>

2. Add 50 \(\mu \text{L} \) of the Sample Reaction Mix to each well containing the Positive Control, Test Samples, and Background Control. Add 50 \(\mu \text{L} \) of DNA Probe Standard Reaction Mix to each well containing DNA Probe Standard.
8.3 **Measurement:**

1. For positive control, test samples, background control, and DNA Probe Standard measure fluorescence (Ex/Em = 651/681 nm) in kinetic mode every 30 seconds for at least 90 minutes at 37°C.

2. Adjust GAIN/PMT setting of your fluorometer as necessary so that the standard curve readings are within the detection range of the instrument.
9. **Data Analysis**

9.1 **Standard Curve:**
1. Record RFU at \(t = 90 \) min for each DNA Probe standard curve reading.
2. Plot the DNA Probe standard curve with pmol of DNA on the x-axis and RFU on the y-axis.
3. Apply a linear fit to the DNA standard values and determine the standard curve equation.

9.2 **Samples/Positive Control:**
1. Subtract background control readings from samples.
2. Apply RFU values at each time point to the standard curve equation to determine pmol of DNA cleaved at each reaction time point.
3. Plot pmol DNA on the y-axis vs. time (in minutes) on the x-axis and determine the slope (pmol/min) of the linear portion of the reaction curve.

\[
\text{Sample DNase I Activity} = \frac{\text{Slope}}{V} \ast D = \text{pmol/min/mL} = \mu U/mL
\]

\[
\text{Sample Specific Activity} = \frac{\text{Slope}}{\mu g} \ast D = \text{pmol/min/\mu g} = \mu U/\mu g
\]

Where:
\(V \) = sample volume added in the sample wells [mL].
\(D \) = sample dilution factor if sample is diluted to fit within the standard curve range (prior to reaction well set up).
Slope = pmol/min (from the linear range of the activity curve).

Unit Definition: One unit of DNase I is the amount of enzyme that cleaved 1.0 \(\mu \text{mol} \) of DNA Probe per min. at 37°C.
10. FAQs / Troubleshooting

General troubleshooting points can be found at www.abcam.com/assaykitguidelines.
11. Typical Data

Data provided for demonstration purposes only.

Figure 1. DNA Probe to Product conversion standard curve.
Figure 2. Representative activity curve for purified DNase I (orange), serum sample (green), and background control (blue) at 37°C.
Figure 3. Comparative analysis of DNase I activity from 25 µL undiluted single donor normal vs. Systematic Lupus Erythematosus (SLE) patient serum sample.
12. Notes
Technical Support

Copyright © 2012-2018 Abcam. All Rights Reserved. The Abcam logo is a registered trademark. All information / detail is correct at time of going to print.

Austria
wissenschaftlicherdienst@abcam.com | 019-288-259

France
supportscientifique@abcam.com | 01.46.94.62.96

Germany
wissenschaftlicherdienst@abcam.com | 030-896-779-154

Spain
soportecientifico@abcam.com | 91-114-65-60

Switzerland
technical@abcam.com

UK, EU and ROW
technical@abcam.com | +44(0)1223-696000

Canada
can.technical@abcam.com | 877-749-8807

US and Latin America
us.technical@abcam.com | 888-772-2226

Asia Pacific
hk.technical@abcam.com | (852) 2603-6823

China
cn.technical@abcam.com | 400 921 0189 / +86 21 2070 0500

Japan
technical@abcam.co.jp | +81-(0)3-6231-0940

Singapore
sg.technical@abcam.com | 800 188-5244

Australia
au.technical@abcam.com | +61-(0)3-8652-1450

New Zealand
nz.technical@abc.com | +64-(0)9-909-7829