ab252899

Tyrosinase Activity Assay Kit (Colorimetric)

View Kit datasheet: https://www.abcam.com/ab252899
(use https://www.abcam.cn/ab252899 for china, or
https://www.abcam.co.jp/ab252899 for Japan)

For the measurement of tyrosinase activity in cell and tissue lysates using a 96-well plate format.

This product is for research use only and is not intended for diagnostic use.
Table of Contents

1. Overview 3
2. Protocol Summary 4
3. Materials Supplied and Storage 5
4. Materials Required, Not Supplied 6
5. General guidelines, precautions, and troubleshooting 7
6. Reagent Preparation 8
7. Assay Procedure 11
8. Typical Data 13
9. Notes 15
1. Overview

Tyrosinase Activity Assay Kit (Colorimetric) (ab252899) is a simple one-step, plate-based assay for the measurement of tyrosinase activity in biological samples. In this assay, tyrosinase catalyses the conversion of a phenolic substrate to a Quinone intermediate, which reacts with the tyrosine enhancer forming a highly stable chromophore with absorbance at 510 nm. The assay can detect as low as 30 μU Tyrosinase in biological samples.

\[
\begin{align*}
\text{Tyrosinase} & \quad \text{Tyrosinase Enhancer} \\
\text{Substrate} & \quad \rightarrow \quad \text{Quinone Intermediate} \quad \rightarrow \quad \text{Chromophore} \\
& \quad \text{(OD 510 nm)}
\end{align*}
\]
2. Protocol Summary

Prepare all samples, standards and controls as instructed.

\[\downarrow \]

Prepare the chromophore standard curve dilutions and plate into a 96-well plate.

\[\downarrow \]

Add 50 µL of Sample Background Control mix to the appropriate wells and 50 µL of Reaction Mix to the Sample, Substrate Background and Positive Control wells.

\[\downarrow \]

Read the absorbance immediately using a plate reader at 37 °C at 510 nm in kinetic mode. Standards may be read in end-point mode.

\[\downarrow \]

Record absorbance at 30 second intervals for 10-15 minutes.

\[\downarrow \]

Use the OD values to calculate the Sample Tyrosine specific activity in Units/mg.
3. Materials Supplied and Storage

Store kit at -20°C in the dark immediately on receipt and check below for storage for individual components. Kit can be stored for 1 year from receipt, if components have not been reconstituted.

Avoid repeated freeze-thaws of reagents.

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Storage temperature (before prep)</th>
<th>Storage temperature (after prep)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosinase Assay Buffer</td>
<td>25 mL</td>
<td>-20°C</td>
<td>4°C</td>
</tr>
<tr>
<td>Tyrosinase Substrate</td>
<td>1.1 mL</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Tyrosinase Enhancer</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Chromophore Standard</td>
<td>3 vials</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
<tr>
<td>Tyrosinase Positive control</td>
<td>1 vial</td>
<td>-20°C</td>
<td>-20°C</td>
</tr>
</tbody>
</table>
4. Materials Required, Not Supplied

These materials are not included in the kit, but will be required to successfully perform this assay:

- 96-Well clear plate with flat bottom.
- Multi-well spectrophotometer.
5. General guidelines, precautions, and troubleshooting

Please observe safe laboratory practice and consult the safety datasheet.

For general guidelines, precautions, limitations on the use of our assay kits and general assay troubleshooting tips, particularly for first time users, please consult our guide: www.abcam.com/assaykitguidelines

For typical data produced using the assay, please see the assay kit datasheet on our website.
6. Reagent Preparation

Briefly centrifuge small vials at low speed prior to opening.

6.1 Tyrosinase Assay Buffer:
Warm to room temperature before use.

6.2 Tyrosinase Substrate:
Thaw on ice before use. Aliquot and store the remaining stock at -20°C in dark vials. Do not expose to light.

6.3 Tyrosinase Enhancer:
Reconstitute in 550 µL water. Aliquot and store the remaining stock at -20°C.

6.4 Chromophore Standard:
Lyophilized chromophore standard is stable for 12 months at -20°C. Reconstitute one vial at a time. Reconstitute immediately before use in 162 µL water to obtain 400 µM stock. Keep on ice. Store the remaining reconstituted standard at -20°C in the dark and use within two weeks.

6.5 Tyrosinase Positive control:
Dissolve the lyophilized tyrosinase in 220 µL Tyrosinase Assay Buffer. Aliquot and store at -20°C. Avoid repeated freeze/thaw cycles. Use within two months. Keep on ice while in use.
7. Sample preparation

- Homogenize cells (8 x 10^6 cells) or tissue (50 mg) with 500 μL ice-cold Tyrosinase Assay buffer to perform lysis and keep on ice for 10 minutes followed by centrifugation at 10,000 x g for 15 minutes at 4°C.

- Collect the supernatant (lysate) and estimate protein concentration using preferred method. We recommend BCA protein assay kit.

- Protein concentration should range between 1 and 2.5 μg / μL. Dilute the lysate if needed using Tyrosinase Assay Buffer.

- Use the samples for activity analysis immediately; if that is not possible, they may be stored at -80 °C. Prepare two wells for each sample labeled “Sample Background Control” (SBC) and “Sample” (S). Add the same volume (2 - 25 μL, i.e. 5 – 25 μg protein) into each of these wells.

For Positive Control: add 2 μL of the provided Tyrosinase Positive Control into the desired well. Adjust volume in each well to 50 μL with Tyrosinase Assay Buffer.

For Assay Background Control (i.e., substrate background): add 50 μL of Tyrosinase Assay Buffer to a well.

ΔNote: For unknown samples, we suggest testing several concentrations to ensure the readings are within the Standard Curve range.
8. Standard Preparation

- Always prepare a fresh set of standards for every use.
- Discard working standard dilutions after use as they do not store well.

8.1 Add 0, 5, 10, 15, 20, 25 μL of the 400 μM standard into a series of wells in a clear 96-well plate to obtain 2, 4, 6, 8 and 10 nmol/well.

8.2 Adjust the volume of each well to 100 μL with Tyrosinase Assay Buffer.

Optional (for samples that have low activity):

8.3 Additional points of 0.5 and 1 nmol may be added to the standard curve.

8.4 Dilute the standard (400 μM) 1:4 in water by adding 10 μL to 30 μL water to obtain 100 μM standards.

8.5 Add 5 and 10 μL of 100 μM standard to two wells in the clear 96-well plate to obtain 0.5 and 1 nmol/well and bring up the volume to 100 μL with Tyrosinase Assay Buffer.

<table>
<thead>
<tr>
<th>Standard#</th>
<th>Chromophore Standard (μL)</th>
<th>Tyrosinase Assay Buffer (μL)</th>
<th>End amount of Chromophore in well (nmol/well)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>95</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>85</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>80</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>25</td>
<td>75</td>
<td>10</td>
</tr>
</tbody>
</table>
9. Assay Procedure

9.1 Reaction mix:
1. Mix enough reagents for the number of assays to be performed.
2. Add “SBC Mix” to “Sample Background Control” wells and “Reaction Mix” to Assay Background Control (substrate background), Sample, and Positive Control wells. For each well, prepare 50 μL.

<table>
<thead>
<tr>
<th></th>
<th>SBC Mix</th>
<th>Reaction Mix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyrosinase Assay Buffer</td>
<td>45 μL</td>
<td>35 μL</td>
</tr>
<tr>
<td>Tyrosinase Substrate</td>
<td>-</td>
<td>10 μL</td>
</tr>
<tr>
<td>Tyrosinase Enhancer</td>
<td>5 μL</td>
<td>5 μL</td>
</tr>
</tbody>
</table>

3. Mix well. Add the reaction Mix to wells of the 96-well plate.
4. Have the plate reader ready at 37°C at absorbance 510 nm on kinetic mode, and record every 30 seconds.
 ΔNote: Prepare Reaction Mix immediately before adding it to the wells.

9.2 Measurement:
1. Immediately start recording absorbance at 30 second intervals for 10-15 minutes for samples with high tyrosinase activity and for 60-90 minutes for samples with low tyrosinase activity. Standard curve may be read in end point mode.
9.3 Calculation:

1. Subtract sample background control OD values from sample OD values. If assay background control OD values are higher than sample background control, subtract those values from sample OD values instead.

2. Estimate the amount of chromophore formed using the standard curve.

3. Calculate ΔM, which is the change in amount of chromophore between time t_1 and t_2, such that t_1 and t_2 both fall in the linear portion of the reaction.

4. Tyrosinase specific activity may be calculated using the following equation:

$$\text{Tyrosinase activity} = \frac{\Delta M}{(\Delta t \times P)} \text{ (nmol / (min x \mu g))} = \text{mUnits / \mu g} = \text{Units / mg}$$

Where:
- $\Delta M =$ Linear change in amount of chromophore Δt (nmol).
- $\Delta t = t_2 - t_1$ (min)
- $P =$ Sample protein content added to well (µg)
10. Typical Data

Data provided for demonstration purposes only.

Figure 1. Chromophore Standard curve

Figure 2. Enzyme kinetics for tyrosinase positive control and for potato lysate (16 µg protein).
Figure 3. Enzyme kinetics for tyrosinase activity in uninduced melanoma cells cultured in EMEM + 10% FBS (15 μg protein), and melanoma cells induced for increased tyrosinase activity by culturing for 4 days in EMEM + 0.5% FBS, supplemented with 500 μM cAMP, 100 μM PDE inhibitor IBMX and 100 μM Cu2+ (10 μg protein).

Figure 4. Tyrosinase specific activity in potato lysate and melanoma cells.
11. Notes