Product datasheet

Recombinant Human MLH1 protein ab131924

Overview

<table>
<thead>
<tr>
<th>Product name</th>
<th>Recombinant Human MLH1 protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein length</td>
<td>Full length protein</td>
</tr>
</tbody>
</table>

Description

<table>
<thead>
<tr>
<th>Nature</th>
<th>Recombinant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>Wheat germ</td>
</tr>
</tbody>
</table>

Amino Acid Sequence

Accession: P40692

Species: Human

Sequence:

MSFVAGVIRRLDETVNRAAGEVIQRPANAIKEMENC
LDAKSTSIQVI
VKEGGLKLIQQDNQTGIRKEDLDIVCERFTTSKLQSFEDLASISTYGFR
GEALASISHVAHTTITKTADGGCAYRASYSDGKLKAP
PKPCAGNQGTQI
TVEDLFYNIATRRKALKNPSEETYGKILEVGGYVGRSVNHAG
ISFSVKKQGET
VADVRTLPMNSTVDNIRSIFGNVRELEDIGCEDKTLAF
KMNGYSNAN
YSVKKCIFLLFINHRLVESTSLRAETVAYAYLPKNTHP
FLYLSLEISP
QNVDNVHPTKHEVHFLHEESILERVQHIESKLLGSNSRMYFTQTLLP
GLAGPSGEMVKTSTTSSTSSGSSSDKVYAHQMVRT
DSREQKLDALQPL
SKPLSSQPQAIYTEDKDSSGRARQDEEMLLELPAP
AEVAAKNQSLQGD
TTKGTSEMSEKRGPTSSNPRKRHEDSDVEMVEDDS
RKEMTAACTPRRRI
INLTSVLQLQEEINEQGHEVLREMLHNHSFVGCVNPQ
WALAOHQTKLYLL
NTTKLSEELFYQLMDYANFGVRLSELSEAPLFDLAMLAL
DSPESGWTEE
DGPKGLEAELYVEFLKKKAEMLADYFSLEDDEEGNLIGL
PLLIDNYVPPL
EGLPIFILRLATEVNWDEEKECFESLSKECAMFYSIRK
QYSEESTLSGQ
QSEVPGSIPNSWKWTVEHVYKALRSHILPPKHFEDG
NILQLANLPDLYKVFERC

Molecular weight 109 kDa including tags
Amino acids 1 to 756

Specifications

Our Abpromise guarantee covers the use of ab131924 in the following tested applications.
The application notes include recommended starting dilutions; optimal dilutions/concentrations should be determined by the end user.

Applications
- ELISA
- SDS-PAGE
- Western blot

Form
Liquid

Additional notes
Protein concentration is above or equal to 0.05 mg/ml.
Best used within three months from the date of receipt.

Preparation and Storage

Stability and Storage
Shipped on dry ice. Upon delivery aliquot and store at -80°C. Avoid freeze / thaw cycles.
pH: 8.00
Constituents: 0.31% Glutathione, 0.79% Tris HCl

General Info

Function
Heterodimerizes with PMS2 to form MuL alpha, a component of the post-replicative DNA mismatch repair system (MMR). DNA repair is initiated by MutS alpha (MSH2-MSH6) or MutS beta (MSH2-MSH6) binding to a dsDNA mismatch, then MutL alpha is recruited to the heteroduplex. Assembly of the MutL-MutS-heteroduplex ternary complex in presence of RFC and PCNA is sufficient to activate endonuclease activity of PMS2. It introduces single-strand breaks near the mismatch and thus generates new entry points for the exonuclease EXO1 to degrade the strand containing the mismatch. DNA methylation would prevent cleavage and therefore assure that only the newly mutated DNA strand is going to be corrected. MutL alpha (MLH1-PMS2) interacts physically with the clamp loader subunits of DNA polymerase III, suggesting that it may play a role to recruit the DNA polymerase III to the site of the MMR. Also implicated in DNA damage signaling, a process which induces cell cycle arrest and can lead to apoptosis in case of major DNA damages. Heterodimerizes with MLH3 to form MutL gamma which plays a role in meiosis.

Tissue specificity
Colon, lymphocytes, breast, lung, spleen, testis, prostate, thyroid, gall bladder and heart.

Involvement in disease
Defects in MLH1 are the cause of hereditary non-polyposis colorectal cancer type 2 (HNPCC2) [MIM:609310]. Mutations in more than one gene locus can be involved alone or in combination in the production of the HNPCC phenotype (also called Lynch syndrome). Most families with clinically recognized HNPCC have mutations in either MLH1 or MSH2 genes. HNPCC is an autosomal, dominantly inherited disease associated with marked increase in cancer
susceptibility. It is characterized by a familial predisposition to early onset colorectal carcinoma (CRC) and extra-colonic cancers of the gastrointestinal, urological and female reproductive tracts. HNPCC is reported to be the most common form of inherited colorectal cancer in the Western world, and accounts for 15% of all colon cancers. Cancers in HNPCC originate within benign neoplastic polyps termed adenomas. Clinically, HNPCC is often divided into two subgroups. Type I: hereditary predisposition to colorectal cancer, a young age of onset, and carcinoma observed in the proximal colon. Type II: patients have an increased risk for cancers in certain tissues such as the uterus, ovary, breast, stomach, small intestine, skin, and larynx in addition to the colon. Diagnosis of classical HNPCC is based on the Amsterdam criteria: 3 or more relatives affected by colorectal cancer, one a first degree relative of the other two; 2 or more generation affected; 1 or more colorectal cancers presenting before 50 years of age; exclusion of hereditary polyposis syndromes. The term 'suspected HNPCC' or 'incomplete HNPCC' can be used to describe families who do not or only partially fulfill the Amsterdam criteria, but in whom a genetic basis for colon cancer is strongly suspected.

Defects in MLH1 are a cause of mismatch repair cancer syndrome (MMRCS) [MIM:276300]; also known as Turcot syndrome or brain tumor-polyposis syndrome 1 (BTPS1). MMRCS is an autosomal dominant disorder characterized by malignant tumors of the brain associated with multiple colorectal adenomas. Skin features include sebaceous cysts, hyperpigmented and cafe au lait spots.

Defects in MLH1 are a cause of Muir-Torre syndrome (MuToS) [MIM:158320]; also abbreviated MTS. MuToS is a rare autosomal dominant disorder characterized by sebaceous neoplasms and visceral malignancy.

Note=Defects in MLH1 may contribute to lobular carcinoma in situ (LCIS), a non-invasive neoplastic disease of the breast.

Defects in MLH1 are a cause of susceptibility to endometrial cancer (ENDMC) [MIM:608089].

Note=Some epigenetic changes can be transmitted unchanged through the germline (termed 'epigenetic inheritance'). Evidence that this mechanism occurs in humans is provided by the identification of individuals in whom 1 allele of the MLH1 gene is epigenetically silenced throughout the soma (implying a germline event). These individuals are affected by HNPCC but does not have identifiable mutations in MLH1, even though it is silenced, which demonstrates that an epimutation can phenocopy a genetic disease.

Sequence similarities
Belongs to the DNA mismatch repair mutL/hexB family.

Cellular localization
Nucleus.

Images
12.5% SDS-PAGE analysis of ab131924 stained with Coomassie Blue.
Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

Our Abpromise to you: Quality guaranteed and expert technical support

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit https://www.abcam.com/abpromise or contact our technical team.

Terms and conditions

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors