For the best experience on the Abcam website please upgrade to a modern browser such as Google Chrome

We use cookies to make our site as useful as possible.

Our Cookie Policy explains how you can opt-out of the cookies we use.

If you continue without changing your cookie settings, we'll assume you’re happy with this.

Continue Continue

United States
Your country/region is currently set to:

If incorrect, please enter your country/region into the box below, to view site information related to your country/region.

Call (888) 77-ABCAM (22226) or contact us
Need help? Contact us

  • My account
  • Sign out
Sign in or Register with us

Welcome

Sign in or

Don't have an account?

Register with us
My basket
Quick order
Abcam homepage

  • Research Products
    By product type
    Primary antibodies
    Secondary antibodies
    ELISA and Matched Antibody Pair Kits
    Cell and tissue imaging tools
    Cellular and biochemical assays
    Proteins and Peptides
    By product type
    Proteomics tools
    Agonists, activators, antagonists and inhibitors
    Cell lines and Lysates
    Multiplex miRNA assays
    Multiplex Assays
    By research area
    Cancer
    Cardiovascular
    Cell Biology
    Epigenetics
    Metabolism
    Developmental Biology
    By research area
    Immunology
    Microbiology
    Neuroscience
    Signal Transduction
    Stem Cells
  • Diagnostic & Therapeutic Solutions
    Custom solutions & partnerships

    Custom antibody development and commercial partnerships to advance your diagnostic and therapeutic discovery.

    Create custom solutions with us

    Partner with us

  • Support
    Support hub

    Access advice and support for any research roadblock

    View support hub

    Protocols

    Your experiments laid out step by step

    View protocols

  • Events
    • Conference calendar
    • Cancer
    • Cardiovascular
    • Epigenetics & Nuclear signaling
    • Immunology
    • Neuroscience
    • Stem cells
    • Tradeshows
    • Scientific webinars
    Keep up to date with the latest events

    Full event breakdown with abstracts, speakers, registration and more

    View global event calendar

  • Pathways
    Cell signalling pathways

    View all pathways

    View all interactive pathways

Supporting our customers and employees during the COVID-19 pandemic. Read more

Overview of NF-κB pathway

Related

  • NF-kB resources
    • NF-κB interactive pathway
      • p65 post-translational modifications
        • Methods to study transcription factor activation
            • p65 products
              • KO-validated anti-NF-κB p65 antibody (ab16502)
                • NF-κB p65 transcription factor assay kit (ab133112)
                  • NF-κB p65 ELISA kit (ab176648)
                    • Recombinant human NF-κB p65 protein (ab114150)
                        • Secondary antibodies
                          • Alexa Fluor® conjugated
                            • Anti-Rabbit IgG Alexa Fluor® 488 (ab150077)
                            • HRP conjugated
                              • Anti-Rabbit IgG (HRP) (ab205718)

                              ​​​​​Learn about NF-κB family structure and signaling via canonical and non-canonical pathways.

                              Contents

                              • ​​What is the NF-κB family?
                              • ​NF-κB signaling pathways
                                • Canonical 
                                • Non-canonical
                              • References

                              ​​​​​What is the NF-κB family?

                              In mammals, the NF-κB family is composed of five related transcription factors: p50, p52, RelA (p65), c-Rel, and RelB1,2. These transcription factors share homology through a 300 amino acid N-terminal DNA binding/dimerization domain, called the Rel homology domain (RHD). The RHD is a platform where family members can form homodimers and heterodimers, enabling them to bind promoters and enhancer regions of genes to modulate their expression.

                              RelA, c-Rel, and RelB contain C-terminal transcriptional activation domains (TADs), which enable them to activate target gene expression. In contrast, p50 and p52 do not contain C-terminal TADs; therefore, p50 and p52 homodimers repress transcription unless they are bound to a protein containing a TAD, such as RelA, c-Rel or RelB or Bcl-3 (a related transcriptional co-activator). Unlike the other NF-κB family members, p50 and p52 are derived from larger precursors, p105 and p100, respectively.

                              NF-κB proteins are inhibited by IκB proteins present in the cytoplasm. There are currently seven identified IκB family members: IκBα, IκBβ, Bcl-3, IκBε, IκBγ, and the precursor proteins p100 and p105, which are characterized by the presence of ankyrin repeats. 

                              The NF-κB signaling pathways

                              Two signaling pathways lead to the activation of NF-κB: the classical (canonical) pathway and the alternative (non-canonical) pathway3–6. The common regulatory step in both of these cascades is activation of an IκB kinase (IKK) complex consisting of catalytic kinase subunits (IKKα and/or IKKβ) and the regulatory non-enzymatic scaffold protein NEMO (NF-κB essential modulator also known as IKKγ).

                              NF-κB dimers are activated by IKK-mediated phosphorylation of IκB, which triggers proteasomal IκB degradation. This enables the active NF-κB transcription factor subunits to translocate to the nucleus and induce target gene expression. NF-κB activation leads to expression of the IκBα gene, which functions as a negative feedback loop to sequester NF-κB subunits, terminating signaling unless a persistent activation signal is present.

                              The NF-κB canonical pathway​

                              NF-kB canonical signaling pathway

                              Figure 1. The canonical pathway. Ligand binding to a receptor leads to the recruitment and activation of an IKK complex comprising IKK alpha and/or IKK beta catalytic subunits and two molecules of NEMO. The IKK complex then phosphorylates IκB leading to degradation by the proteasome. NF-κB then translocates to the nucleus to activate target genes.

                              ​In the canonical signaling pathway, binding of a ligand to a cell surface receptor such as a member of the Toll-like receptor superfamily leads to the recruitment of adaptors (such as TRAF) to the cytoplasmic domain of the receptor (Figure 1). These adaptors in turn recruit the IKK complex, which leads to phosphorylation and degradation of the IκB inhibitor. The canonical pathway activates NF-κB dimers comprising RelA, c-Rel, RelB, and p50.

                              The NF-κB non-canonical pathway

                              The non-canonical pathway is responsible for the activation of p100/RelB complexes and occurs during the development of lymphoid organs responsible for the generation of B and T lymphocytes (Figure 2). Only a small number of stimuli are known to activate NF-κB via this pathway and these factors include lymphotoxin B and B cell-activating factor (BAFF).

                              NF-kB non-canonical signaling pathway

                              Figure 2: The non-canonical pathway. Non-canonical NF-kB activation involves phosphorylation and processing of the p52 precursor, p100 into the mature protein, and subsequent nuclear translocation of the RelB:p52 heterodimer to the nucleus to activate target genes.

                              This pathway involves an IKK complex that contains two IKKα subunits, but not NEMO. In the non-canonical pathway, ligand-induced activation triggers NF-κB inducing kinase (NIK) to phosphorylate and activate the IKKα complex. In turn, the IKKα complex phosphorylates p100 leading to the processing and liberation of the p52/RelB active heterodimer.

                              For a more detailed look at NF- κB signaling, view our interactive pathway.


                              ​​References

                              1. Moynagh, P.N. The NFkB pathway. J Cell Sci. 118, 4389–4392 (2005).
                              2. Hoffmann, A., Natoli, G., Ghosh, G. Transcriptional regulation via the NFkB signaling module. Oncogene 25, 6706–6716 (2006).
                              3. Karin, M. How NFkB is activated: the role of the IkB kinase (IKK) complex. Oncogene 18, 6867–6874 (1999).
                              4. Tergaonkar, V. NFkB pathway: A good signaling paradigm and therapeutic target. Int J Biochem Cell Biol. 38, 1647–1653 (2006).
                              5. Gilmore, T.D. Introduction to NFkB: players, pathways, perspectives. Oncogene 25, 6680–6684 (2006).
                              6. Scheidereit, C. IkB kinase complexes: gateways to NFkB activation and transcription. Oncogene 25, 6685–6705 (2006). 




                              Get resources and offers direct to your inbox Sign up
                              A-Z by research area
                              • Cancer
                              • Cardiovascular
                              • Cell biology
                              • Developmental biology
                              • Epigenetics & Nuclear signaling
                              • Immunology
                              • Metabolism
                              • Microbiology
                              • Neuroscience
                              • Signal transduction
                              • Stem cells
                              A-Z by product type
                              • Primary antibodies
                              • Secondary antibodies
                              • Biochemicals
                              • Isotype controls
                              • Flow cytometry multi-color selector
                              • Kits
                              • Loading controls
                              • Lysates
                              • Peptides
                              • Proteins
                              • Slides
                              • Tags and cell markers
                              • Tools & Reagents
                              Help & support
                              • Support
                              • Make an Inquiry
                              • Protocols & troubleshooting
                              • Placing an order
                              • RabMAb products
                              • Biochemical product FAQs
                              • Training
                              • Browse by Target
                              Company
                              • Corporate site
                              • Investor relations
                              • Company news
                              • Careers
                              • About us
                              • Blog
                              Events
                              • Tradeshows
                              • Conferences
                              International websites
                              • abcam.cn
                              • abcam.co.jp

                              Join with us

                              • LinkedIn
                              • facebook
                              • Twitter
                              • YouTube
                              • Terms of sale
                              • Website terms of use
                              • Cookie policy
                              • Privacy policy
                              • Legal
                              • Modern slavery statement
                              © 1998-2021 Abcam plc. All rights reserved.