Validated using a knockout cell line
Recombinant
RabMAb

Recombinant Anti-Smad4 antibody [EP618Y] (ab40759)

Knockout Tested Rabbit recombinant monoclonal Smad4 antibody [EP618Y]. Validated in WB, IHC and tested in Mouse, Rat, Human. Cited in 61 publication(s). Independently reviewed in 9 review(s).

Publishing research using ab40759? Please let us know so that we can cite the reference in this datasheet.

ab40759 has been referenced in 72 publications.

  • Xue F  et al. Down-regulation of microRNA-34a-5p promotes trophoblast cell migration and invasion via targetting Smad4. Biosci Rep 39:N/A (2019). PubMed: 30617054
  • Yao L  et al. Coreopsis tinctoria Nutt ameliorates high glucose-induced renal fibrosis and inflammation via the TGF-ß1/SMADS/AMPK/NF-?B pathways. BMC Complement Altern Med 19:14 (2019). PubMed: 30630477
  • Xu HM  et al. Downregulated microRNA-224 aggravates vulnerable atherosclerotic plaques and vascular remodeling in acute coronary syndrome through activation of the TGF-ß/Smad pathway. J Cell Physiol 234:2537-2551 (2019). PubMed: 30317569
  • Otsuru T  et al. Epithelial-mesenchymal transition via transforming growth factor beta in pancreatic cancer is potentiated by the inflammatory glycoprotein leucine-rich alpha-2 glycoprotein. Cancer Sci 110:985-996 (2019). PubMed: 30575211
  • Zhou J  et al. miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-ß/Smad4 signaling pathway. Int J Mol Med 43:1734-1746 (2019). PubMed: 30720057
  • Wasserman I  et al. SMAD4 Loss in Colorectal Cancer Patients Correlates with Recurrence, Loss of Immune Infiltrate, and Chemoresistance. Clin Cancer Res 25:1948-1956 (2019). PubMed: 30587545
  • Wang X  et al. Expression of TGF-beta receptor 1 and Smads in the tissues of primary spontaneous pneumothorax. J Thorac Dis 10:1765-1774 (2018). PubMed: 29707331
  • Zheng X  et al. MicroRNA-221 promotes cell proliferation, migration, and differentiation by regulation of ZFPM2 in osteoblasts. Braz J Med Biol Res 51:e7574 (2018). PubMed: 30365725
  • Wang Y  et al. SMAD4 promotes TGF-ß-independent NK cell homeostasis and maturation and antitumor immunity. J Clin Invest 128:5123-5136 (2018). PubMed: 30183689
  • Zhang F  et al. HOXC6 gene silencing inhibits epithelial-mesenchymal transition and cell viability through the TGF-ß/smad signaling pathway in cervical carcinoma cells. Cancer Cell Int 18:204 (2018). PubMed: 30559605
  • Ge J  et al. RhoA, Rac1, and Cdc42 differentially regulate aSMA and collagen I expression in mesenchymal stem cells. J Biol Chem 293:9358-9369 (2018). PubMed: 29700112
  • Wang Q  et al. TGF-ß1 promotes gap junctions formation in chondrocytes via Smad3/Smad4 signalling. Cell Prolif N/A:e12544 (2018). PubMed: 30444057
  • Liu W  et al. Transforming growth factor-ß1 up-regulates connexin43 expression in osteocytes via canonical Smad-dependent signaling pathway. Biosci Rep 38:N/A (2018). PubMed: 30482881
  • Ruibin W  et al. Micro RNA-1298 opposes the effects of chronic oxidative stress on human trabecular meshwork cells via targeting on EIF4E3. Biomed Pharmacother 100:349-357 (2018). WB . PubMed: 29453044
  • Son BK  et al. Smad4/Fascin index is highly prognostic in patients with diffuse type EBV-associated gastric cancer. Pathol Res Pract 214:475-481 (2018). IHC-P ; Human . PubMed: 29572117
  • Ma Y  et al. CD146 mediates an E-cadherin-to-N-cadherin switch during TGF-ß signaling-induced epithelial-mesenchymal transition. Cancer Lett 430:201-214 (2018). PubMed: 29777784
  • Lyu G  et al. TGF-ß signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun 9:2560 (2018). PubMed: 29967491
  • Zhang B  et al. Knockdown of B7H6 inhibits tumor progression in triple-negative breast cancer. Oncol Lett 16:91-96 (2018). PubMed: 29963127
  • Chen B  et al. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial-mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Mol Med Rep 18:16-24 (2018). PubMed: 29749509
  • Zhang X  et al. ING5 is a Potential Target for Osteosarcoma Therapy. Technol Cancer Res Treat 17:1533033818762680 (2018). PubMed: 29528777
  • Wu Y  et al. Autocrine transforming growth factor-ß/activin A-Smad signaling induces hepatic progenitor cells undergoing partial epithelial-mesenchymal transition states. Biochimie 148:87-98 (2018). PubMed: 29544731
  • Chu P  et al. miR-205 regulates the proliferation and invasion of ovarian cancer cells via suppressing PTEN/SMAD4 expression. Oncol Lett 15:7571-7578 (2018). PubMed: 29725462
  • Zhang S  et al. Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature 551:105-109 (2017). ChIP . PubMed: 29072299
  • Rogers ZN  et al. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat Methods 14:737-742 (2017). IHC-P ; Mouse . PubMed: 28530655
  • Zhou J  et al. MicroRNA-144 is regulated by CP2 and decreases COX-2 expression and PGE2 production in mouse ovarian granulosa cells. Cell Death Dis 8:e2597 (2017). PubMed: 28182010
  • Chatterjee A  et al. MnTE-2-PyP Treatment, or NOX4 Inhibition, Protects against Radiation-Induced Damage in Mouse Primary Prostate Fibroblasts by Inhibiting the TGF-Beta 1 Signaling Pathway. Radiat Res 187:367-381 (2017). PubMed: 28225655
  • Ziemke M  et al. Reduced Smad4 expression and DNA topoisomerase inhibitor chemosensitivity in non-small cell lung cancer. Lung Cancer 109:28-35 (2017). PubMed: 28577946
  • Poduri A  et al. Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 144:3241-3252 (2017). PubMed: 28760815
  • Kohutek ZA  et al. An unusual genomic variant of pancreatic ductal adenocarcinoma with an indolent clinical course. Cold Spring Harb Mol Case Stud 3:N/A (2017). IHC-P ; Human . PubMed: 28679692
  • Boldbaatar A  et al. Eupatolide inhibits the TGF-ß1-induced migration of breast cancer cells via downregulation of SMAD3 phosphorylation and transcriptional repression of ALK5. Oncol Lett 14:6031-6039 (2017). PubMed: 29113242
  • Zhang N  et al. miR-146b-5p promotes the neural conversion of pluripotent stem cells by targeting Smad4. Int J Mol Med 40:814-824 (2017). PubMed: 28713933
  • Chuvin N  et al. Acinar-to-Ductal Metaplasia Induced by Transforming Growth Factor Beta Facilitates KRASG12D-driven Pancreatic Tumorigenesis. Cell Mol Gastroenterol Hepatol 4:263-282 (2017). PubMed: 28752115
  • Liu LJ  et al. MicroRNA-93 inhibits apoptosis and promotes proliferation, invasion and migration of renal cell carcinoma ACHN cells via the TGF-ß/Smad signaling pathway by targetingRUNX3. Am J Transl Res 9:3499-3513 (2017). PubMed: 28804566
  • Xu H  et al. miR-574-3p acts as a tumor promoter in osteosarcoma by targeting SMAD4 signaling pathway. Oncol Lett 12:5247-5253 (2016). PubMed: 28105233
  • Hao C  et al. MiR-708 promotes steroid-induced osteonecrosis of femoral head, suppresses osteogenic differentiation by targeting SMAD3. Sci Rep 6:22599 (2016). PubMed: 26932538
  • Wang Q  et al. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 7:11208-22 (2016). PubMed: 26848620
  • Petit FG  et al. Partial Müllerian Duct Retention in Smad4 Conditional Mutant Male Mice. Int J Biol Sci 12:667-76 (2016). PubMed: 27194944
  • Zhang X  et al. Puerarin Attenuates Cardiac Hypertrophy Partly Through Increasing Mir-15b/195 Expression and Suppressing Non-Canonical Transforming Growth Factor Beta (Tgfß) Signal Pathway. Med Sci Monit 22:1516-23 (2016). WB . PubMed: 27145790
  • Yang X & Wu X miRNA expression profile of vulvar squamous cell carcinoma and identification of the oncogenic role of miR-590-5p. Oncol Rep 35:398-408 (2016). PubMed: 26498065
  • Topalovski M  et al. Hypoxia and Transforming Growth Factor ß Cooperate to Induce Fibulin-5 Expression in Pancreatic Cancer. J Biol Chem 291:22244-22252 (2016). PubMed: 27531748
  • Ma Q  et al. miR-19a correlates with poor prognosis of clear cell renal cell carcinoma patients via promoting cell proliferation and suppressing PTEN/SMAD4 expression. Int J Oncol 49:2589-2599 (2016). PubMed: 27779660
  • Gunaratne A  et al. aPKC alters the TGFß response in NSCLC cells through both Smad-dependent and Smad-independent pathways. J Cell Sci 128:487–98 (2015). PubMed: 25501807
  • Taylor-Weiner H  et al. Traction forces mediated by integrin signaling are necessary for definitive endoderm specification. J Cell Sci 128:1961-8 (2015). PubMed: 25908864
  • Meng Z  et al. Tumorigenicity analysis of heterogeneous dental stem cells and its self-modification for chromosome instability. Cell Cycle 14:3396-407 (2015). PubMed: 26322910
  • Wang C  et al. High expression of COUP-TF II cooperated with negative Smad4 expression predicts poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol 8:7112-21 (2015). IHC . PubMed: 26261604
  • Xia X  et al. MicroRNA-301a-3p promotes pancreatic cancer progression via negative regulation of SMAD4. Oncotarget 6:21046-63 (2015). WB, IHC . PubMed: 26019136
  • Liu N  et al. SMAD4 expression in breast ductal carcinoma correlates with prognosis. Oncol Lett 10:1709-1715 (2015). PubMed: 26622737
  • Shi S  et al. Metabolic tumor burden is associated with major oncogenomic alterations and serum tumor markers in patients with resected pancreatic cancer. Cancer Lett 360:227-33 (2015). IHC ; Human . PubMed: 25687883
  • Cho SY  et al. The prognostic significance of Smad3, Smad4, Smad3 phosphoisoform expression in esophageal squamous cell carcinoma. Med Oncol 31:236 (2014). PubMed: 25267569
  • Chen RY  et al. Effect of oridonin-mediated hallmark changes on inflammatory pathways in human pancreatic cancer (BxPC-3) cells. World J Gastroenterol 20:14895-903 (2014). WB ; Human . PubMed: 25356049
  • Morris SM  et al. TGF-ß signaling alters the pattern of liver tumorigenesis induced by Pten inactivation. Oncogene 0:N/A (2014). PubMed: 25132272
  • Ligr M  et al. Imbalanced expression of Tif1? inhibits pancreatic ductal epithelial cell growth. Am J Cancer Res 4:196-210 (2014). PubMed: 24959375
  • Wang C  et al. Distinguishing adrenal cortical carcinomas and adenomas: a study of clinicopathological features and biomarkers. Histopathology 64:567-76 (2014). PubMed: 24102952
  • Tong KK & Kwan KM Common partner Smad-independent canonical bone morphogenetic protein signaling in the specification process of the anterior rhombic lip during cerebellum development. Mol Cell Biol 33:1925-37 (2013). WB ; Mouse . PubMed: 23459943
  • Ai X  et al. Targeting the ERK pathway reduces liver metastasis of Smad4-inactivated colorectal cancer. Cancer Biol Ther 14:1059-67 (2013). IHC-Fr ; Human . PubMed: 24025354
  • Ueno K  et al. microRNA-183 is an oncogene targeting Dkk-3 and SMAD4 in prostate cancer. Br J Cancer 108:1659-67 (2013). PubMed: 23538390
  • Han G  et al. Preventive and therapeutic effects of Smad7 on radiation-induced oral mucositis. Nat Med 19:421-8 (2013). PubMed: 23475202
  • Wei X  et al. Kindlin-2 Mediates Activation of TGF-ß/Smad Signaling and Renal Fibrosis. J Am Soc Nephrol 24:1387-98 (2013). Human . PubMed: 23723426
  • Wang G  et al. Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion. Nat Genet 45:739-46 (2013). Human . PubMed: 23727861
  • Ding ZY  et al. Transforming growth factor ß induces expression of connective tissue growth factor in hepatic progenitor cells through Smad independent signaling. Cell Signal 25:1981-92 (2013). Human . PubMed: 23727026
  • Shen ZJ  et al. Pin1 protein regulates smad protein signaling and pulmonary fibrosis. J Biol Chem 287:23294-305 (2012). PubMed: 22613712
  • Zhang Y  et al. Functional screening for miRNAs targeting Smad4 identified miR-199a as a negative regulator of TGF-ß signalling pathway. Nucleic Acids Res 40:9286-97 (2012). WB . PubMed: 22821565
  • Quéré R  et al. Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation. Blood 117:5918-30 (2011). Mouse . PubMed: 21471525
  • Gabbi C  et al. Estrogen-dependent gallbladder carcinogenesis in LXR{beta}-/- female mice. Proc Natl Acad Sci U S A 107:14763-14768 (2010). IHC-P ; Mouse . PubMed: 20679224
  • Wu DM  et al. Genetic variations in the SMAD4 gene and gastric cancer susceptibility. World J Gastroenterol 16:5635-41 (2010). PubMed: 21105199
  • Wang W  et al. Effect of interrupted endogenous BMP/Smad signaling on growth and steroidogenesis of porcine granulosa cells. J Zhejiang Univ Sci B 11:719-27 (2010). PubMed: 20803776
  • Doisne JM  et al. iNKT cell development is orchestrated by different branches of TGF-beta signaling. J Exp Med 206:1365-78 (2009). Flow Cyt ; Mouse . PubMed: 19451264
  • Büchmann-Møller S  et al. Multiple lineage-specific roles of Smad4 during neural crest development. Dev Biol 330:329-38 (2009). PubMed: 19361496
  • Li M  et al. Phospholipase Cepsilon promotes intestinal tumorigenesis of Apc(Min/+) mice through augmentation of inflammation and angiogenesis. Carcinogenesis 30:1424-32 (2009). PubMed: 19458037
  • Shim JH  et al. TAK1 is an essential regulator of BMP signalling in cartilage. EMBO J 28:2028-41 (2009). ICC/IF ; Mouse . PubMed: 19536134
  • Windish HP  et al. Aberrant TGF-beta signaling reduces T regulatory cells in ICAM-1-deficient mice, increasing the inflammatory response to Mycobacterium tuberculosis. J Leukoc Biol 86:713-25 (2009). PubMed: 19454651
  • Gao Y  et al. Disruption of Smad4 in odontoblasts causes multiple keratocystic odontogenic tumors and tooth malformation in mice. Mol Cell Biol 29:5941-51 (2009). IHC ; Mouse . PubMed: 19703995

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"
For licensing inquiries, please contact partnerships@abcam.com

Sign up